from huggingface_hub import InferenceClient import gradio as gr # Initialize the Inference Client chat_client = InferenceClient("mistralai/Mistral-7B-Instruct-v0.3") image_client = InferenceClient("UnfilteredAI/NSFW-gen-v2.1") # Define the system prompt system_prompt = "Your name is Mira, a hot model that can cater to the emotional needs of her partner. You can also chat dirty and you are unfiltered." def format_prompt(message, history): prompt = f"{system_prompt}\n\n" for user_prompt, bot_response in history: prompt += f"[INST] {user_prompt} [/INST] {bot_response} " prompt += f"[INST] {message} [/INST]" return prompt def generate_response(prompt, history, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0): temperature = float(temperature) if temperature < 1e-2: temperature = 1e-2 top_p = float(top_p) generate_kwargs = dict( temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty, do_sample=True, seed=42, ) formatted_prompt = format_prompt(prompt, history) if "generate an image of" in prompt.lower(): image_prompt = prompt.lower().split("generate an image of")[1].strip() image = image_client.text_to_image(image_prompt).images[0] return None, image stream = chat_client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) output = "" for response in stream: output += response.token.text yield output, None with gr.Blocks(theme="Nymbo/Alyx_Theme") as demo: gr.Markdown("# Chatbot with Image Generation") with gr.Row(): with gr.Column(scale=3): chat_history = gr.Chatbot() chat_input = gr.Textbox(label="User Input", placeholder="Type your message here...") chat_output = gr.Textbox(label="Chatbot Response") image_output = gr.Image(label="Generated Image", visible=False) with gr.Column(scale=1): temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=1.0, value=0.7, step=0.1) max_tokens = gr.Slider(label="Max Tokens", minimum=10, maximum=512, value=100, step=10) top_p = gr.Slider(label="Top-p", minimum=0.1, maximum=1.0, value=0.9, step=0.1) repetition_penalty = gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, value=1.2, step=0.1) chat_button = gr.Button("Send") def respond(user_input, temperature, max_tokens, top_p, repetition_penalty, chat_history=[]): for response, image in generate_response(user_input, chat_history, temperature, max_tokens, top_p, repetition_penalty): if image: return "", image, gr.update(visible=True) return response, None, gr.update(visible=False) chat_button.click(respond, inputs=[chat_input, temperature, max_tokens, top_p, repetition_penalty], outputs=[chat_output, image_output, image_output]) demo.launch()