File size: 3,807 Bytes
37aeb5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 |
# modified from https://github.com/Profactor/continuous-remeshing
import torch
import numpy as np
import trimesh
from typing import Tuple
def to_numpy(*args):
def convert(a):
if isinstance(a,torch.Tensor):
return a.detach().cpu().numpy()
assert a is None or isinstance(a,np.ndarray)
return a
return convert(args[0]) if len(args)==1 else tuple(convert(a) for a in args)
def laplacian(
num_verts:int,
edges: torch.Tensor #E,2
) -> torch.Tensor: #sparse V,V
"""create sparse Laplacian matrix"""
V = num_verts
E = edges.shape[0]
#adjacency matrix,
idx = torch.cat([edges, edges.fliplr()], dim=0).type(torch.long).T # (2, 2*E)
ones = torch.ones(2*E, dtype=torch.float32, device=edges.device)
A = torch.sparse.FloatTensor(idx, ones, (V, V))
#degree matrix
deg = torch.sparse.sum(A, dim=1).to_dense()
idx = torch.arange(V, device=edges.device)
idx = torch.stack([idx, idx], dim=0)
D = torch.sparse.FloatTensor(idx, deg, (V, V))
return D - A
def _translation(x, y, z, device):
return torch.tensor([[1., 0, 0, x],
[0, 1, 0, y],
[0, 0, 1, z],
[0, 0, 0, 1]],device=device) #4,4
def _projection(r, device, l=None, t=None, b=None, n=1.0, f=50.0, flip_y=True):
"""
see https://blog.csdn.net/wodownload2/article/details/85069240/
"""
if l is None:
l = -r
if t is None:
t = r
if b is None:
b = -t
p = torch.zeros([4,4],device=device)
p[0,0] = 2*n/(r-l)
p[0,2] = (r+l)/(r-l)
p[1,1] = 2*n/(t-b) * (-1 if flip_y else 1)
p[1,2] = (t+b)/(t-b)
p[2,2] = -(f+n)/(f-n)
p[2,3] = -(2*f*n)/(f-n)
p[3,2] = -1
return p #4,4
def _orthographic(r, device, l=None, t=None, b=None, n=1.0, f=50.0, flip_y=True):
if l is None:
l = -r
if t is None:
t = r
if b is None:
b = -t
o = torch.zeros([4,4],device=device)
o[0,0] = 2/(r-l)
o[0,3] = -(r+l)/(r-l)
o[1,1] = 2/(t-b) * (-1 if flip_y else 1)
o[1,3] = -(t+b)/(t-b)
o[2,2] = -2/(f-n)
o[2,3] = -(f+n)/(f-n)
o[3,3] = 1
return o #4,4
def make_star_cameras(az_count,pol_count,distance:float=10.,r=None,image_size=[512,512],device='cuda'):
if r is None:
r = 1/distance
A = az_count
P = pol_count
C = A * P
phi = torch.arange(0,A) * (2*torch.pi/A)
phi_rot = torch.eye(3,device=device)[None,None].expand(A,1,3,3).clone()
phi_rot[:,0,2,2] = phi.cos()
phi_rot[:,0,2,0] = -phi.sin()
phi_rot[:,0,0,2] = phi.sin()
phi_rot[:,0,0,0] = phi.cos()
theta = torch.arange(1,P+1) * (torch.pi/(P+1)) - torch.pi/2
theta_rot = torch.eye(3,device=device)[None,None].expand(1,P,3,3).clone()
theta_rot[0,:,1,1] = theta.cos()
theta_rot[0,:,1,2] = -theta.sin()
theta_rot[0,:,2,1] = theta.sin()
theta_rot[0,:,2,2] = theta.cos()
mv = torch.empty((C,4,4), device=device)
mv[:] = torch.eye(4, device=device)
mv[:,:3,:3] = (theta_rot @ phi_rot).reshape(C,3,3)
mv = _translation(0, 0, -distance, device) @ mv
return mv, _projection(r,device)
def make_star_cameras_orthographic(az_count,pol_count,distance:float=10.,r=None,image_size=[512,512],device='cuda'):
mv, _ = make_star_cameras(az_count,pol_count,distance,r,image_size,device)
if r is None:
r = 1
return mv, _orthographic(r,device)
def make_sphere(level:int=2,radius=1.,device='cuda') -> Tuple[torch.Tensor,torch.Tensor]:
sphere = trimesh.creation.icosphere(subdivisions=level, radius=1.0, color=None)
vertices = torch.tensor(sphere.vertices, device=device, dtype=torch.float32) * radius
faces = torch.tensor(sphere.faces, device=device, dtype=torch.long)
return vertices,faces |