File size: 1,085 Bytes
37aeb5b 5a3e910 37aeb5b f38a22d 37aeb5b b742deb 37aeb5b b742deb 8981664 b869920 37aeb5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 |
import sys
from PIL import Image
from gradio_app.utils import rgba_to_rgb, simple_remove
from gradio_app.custom_models.utils import load_pipeline
from scripts.utils import rotate_normals_torch
from scripts.all_typing import *
training_config = "gradio_app/custom_models/image2normal.yaml"
checkpoint_path = "ckpt/image2normal/unet_state_dict.pth"
trainer, pipeline = load_pipeline(training_config, checkpoint_path)
def predict_normals(image: List[Image.Image], guidance_scale=2., do_rotate=True, num_inference_steps=30, **kwargs):
pipeline.enable_model_cpu_offload()
img_list = image if isinstance(image, list) else [image]
img_list = [rgba_to_rgb(i) if i.mode == 'RGBA' else i for i in img_list]
images = trainer.pipeline_forward(
pipeline=pipeline,
image=img_list,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
**kwargs
).images
images = simple_remove(images)
if do_rotate and len(images) > 1:
images = rotate_normals_torch(images, return_types='pil')
return images |