|
from tqdm import tqdm |
|
from PIL import Image |
|
import numpy as np |
|
import torch |
|
from typing import List |
|
from mesh_reconstruction.remesh import calc_vertex_normals |
|
from mesh_reconstruction.opt import MeshOptimizer |
|
from mesh_reconstruction.func import make_star_cameras_orthographic |
|
from mesh_reconstruction.render import NormalsRenderer, Pytorch3DNormalsRenderer |
|
from scripts.utils import to_py3d_mesh, init_target |
|
|
|
def reconstruct_stage1(pils: List[Image.Image], steps=100, vertices=None, faces=None, start_edge_len=0.15, end_edge_len=0.005, decay=0.995, return_mesh=True, loss_expansion_weight=0.1, gain=0.1): |
|
vertices, faces = vertices.to("cuda"), faces.to("cuda") |
|
assert len(pils) == 4 |
|
mv,proj = make_star_cameras_orthographic_py3d([0, 270, 180, 90], device="cuda", focal=1., dist=4.0) |
|
renderer = Pytorch3DNormalsRenderer(cameras, list(pils[0].size), device="cuda") |
|
|
|
target_images = init_target(pils, new_bkgd=(0., 0., 0.)) |
|
|
|
target_images = target_images[[0, 3, 2, 1]] |
|
|
|
|
|
opt = MeshOptimizer(vertices,faces, local_edgelen=False, gain=gain, edge_len_lims=(end_edge_len, start_edge_len)) |
|
|
|
vertices = opt.vertices |
|
|
|
mask = target_images[..., -1] < 0.5 |
|
|
|
for i in tqdm(range(steps)): |
|
opt.zero_grad() |
|
opt._lr *= decay |
|
normals = calc_vertex_normals(vertices,faces) |
|
images = renderer.render(vertices,normals,faces) |
|
|
|
loss_expand = 0.5 * ((vertices+normals).detach() - vertices).pow(2).mean() |
|
|
|
t_mask = images[..., -1] > 0.5 |
|
loss_target_l2 = (images[t_mask] - target_images[t_mask]).abs().pow(2).mean() |
|
loss_alpha_target_mask_l2 = (images[..., -1][mask] - target_images[..., -1][mask]).pow(2).mean() |
|
|
|
loss = loss_target_l2 + loss_alpha_target_mask_l2 + loss_expand * loss_expansion_weight |
|
|
|
|
|
loss_oob = (vertices.abs() > 0.99).float().mean() * 10 |
|
loss = loss + loss_oob |
|
|
|
loss.backward() |
|
opt.step() |
|
|
|
vertices,faces = opt.remesh(poisson=False) |
|
|
|
vertices, faces = vertices.detach(), faces.detach() |
|
|
|
if return_mesh: |
|
return to_py3d_mesh(vertices, faces) |
|
else: |
|
return vertices, faces |
|
|