|
|
|
import nvdiffrast.torch as dr |
|
import torch |
|
from typing import Tuple |
|
|
|
def _warmup(glctx, device=None): |
|
device = 'cuda' if device is None else device |
|
|
|
def tensor(*args, **kwargs): |
|
return torch.tensor(*args, device=device, **kwargs) |
|
pos = tensor([[[-0.8, -0.8, 0, 1], [0.8, -0.8, 0, 1], [-0.8, 0.8, 0, 1]]], dtype=torch.float32) |
|
tri = tensor([[0, 1, 2]], dtype=torch.int32) |
|
dr.rasterize(glctx, pos, tri, resolution=[256, 256]) |
|
|
|
class NormalsRenderer: |
|
|
|
_glctx:dr.RasterizeGLContext = None |
|
|
|
def __init__( |
|
self, |
|
mv: torch.Tensor, |
|
proj: torch.Tensor, |
|
image_size: Tuple[int,int], |
|
mvp = None, |
|
device=None, |
|
): |
|
if mvp is None: |
|
self._mvp = proj @ mv |
|
else: |
|
self._mvp = mvp |
|
self._image_size = image_size |
|
self._glctx = dr.RasterizeGLContext(output_db=False, device=device) |
|
_warmup(self._glctx, device) |
|
|
|
def render(self, |
|
vertices: torch.Tensor, |
|
normals: torch.Tensor, |
|
faces: torch.Tensor, |
|
) ->torch.Tensor: |
|
|
|
V = vertices.shape[0] |
|
faces = faces.type(torch.int32) |
|
vert_hom = torch.cat((vertices, torch.ones(V,1,device=vertices.device)),axis=-1) |
|
vertices_clip = vert_hom @ self._mvp.transpose(-2,-1) |
|
rast_out,_ = dr.rasterize(self._glctx, vertices_clip, faces, resolution=self._image_size, grad_db=False) |
|
vert_col = (normals+1)/2 |
|
col,_ = dr.interpolate(vert_col, rast_out, faces) |
|
alpha = torch.clamp(rast_out[..., -1:], max=1) |
|
col = torch.concat((col,alpha),dim=-1) |
|
col = dr.antialias(col, rast_out, vertices_clip, faces) |
|
return col |
|
|
|
from pytorch3d.structures import Meshes |
|
from pytorch3d.renderer.mesh.shader import ShaderBase |
|
from pytorch3d.renderer import ( |
|
RasterizationSettings, |
|
MeshRendererWithFragments, |
|
TexturesVertex, |
|
MeshRasterizer, |
|
BlendParams, |
|
FoVOrthographicCameras, |
|
look_at_view_transform, |
|
hard_rgb_blend, |
|
) |
|
|
|
class VertexColorShader(ShaderBase): |
|
def forward(self, fragments, meshes, **kwargs) -> torch.Tensor: |
|
blend_params = kwargs.get("blend_params", self.blend_params) |
|
texels = meshes.sample_textures(fragments) |
|
return hard_rgb_blend(texels, fragments, blend_params) |
|
|
|
def render_mesh_vertex_color(mesh, cameras, H, W, blur_radius=0.0, faces_per_pixel=1, bkgd=(0., 0., 0.), dtype=torch.float32, device="cuda"): |
|
if len(mesh) != len(cameras): |
|
if len(cameras) % len(mesh) == 0: |
|
mesh = mesh.extend(len(cameras)) |
|
else: |
|
raise NotImplementedError() |
|
|
|
|
|
input_dtype = dtype |
|
blend_params = BlendParams(1e-4, 1e-4, bkgd) |
|
|
|
|
|
raster_settings = RasterizationSettings( |
|
image_size=(H, W), |
|
blur_radius=blur_radius, |
|
faces_per_pixel=faces_per_pixel, |
|
clip_barycentric_coords=True, |
|
bin_size=None, |
|
max_faces_per_bin=500000, |
|
) |
|
|
|
|
|
|
|
renderer = MeshRendererWithFragments( |
|
rasterizer=MeshRasterizer( |
|
cameras=cameras, |
|
raster_settings=raster_settings |
|
), |
|
shader=VertexColorShader( |
|
device=device, |
|
cameras=cameras, |
|
blend_params=blend_params |
|
) |
|
) |
|
|
|
|
|
with torch.autocast(dtype=input_dtype, device_type=torch.device(device).type): |
|
images, _ = renderer(mesh) |
|
return images |
|
|
|
class Pytorch3DNormalsRenderer: |
|
def __init__(self, cameras, image_size, device): |
|
self.cameras = cameras.to(device) |
|
self._image_size = image_size |
|
self.device = device |
|
|
|
def render(self, |
|
vertices: torch.Tensor, |
|
normals: torch.Tensor, |
|
faces: torch.Tensor, |
|
) ->torch.Tensor: |
|
mesh = Meshes(verts=[vertices], faces=[faces], textures=TexturesVertex(verts_features=[(normals + 1) / 2])).to(self.device) |
|
return render_mesh_vertex_color(mesh, self.cameras, self._image_size[0], self._image_size[1], device=self.device) |
|
|
|
def get_camera(R, T, focal_length=1 / (2**0.5)): |
|
focal_length = 1 / focal_length |
|
camera = FoVOrthographicCameras(device=R.device, R=R, T=T, min_x=-focal_length, max_x=focal_length, min_y=-focal_length, max_y=focal_length) |
|
return camera |
|
|
|
def make_star_cameras_orthographic_py3d(azim_list, device, focal=2/1.35, dist=1.1): |
|
R, T = look_at_view_transform(dist, 0, azim_list) |
|
focal_length = 1 / focal |
|
return FoVOrthographicCameras(device=R.device, R=R, T=T, min_x=-focal_length, max_x=focal_length, min_y=-focal_length, max_y=focal_length).to(device) |
|
|
|
def save_tensor_to_img(tensor, save_dir): |
|
from PIL import Image |
|
import numpy as np |
|
for idx, img in enumerate(tensor): |
|
img = img[..., :3].cpu().numpy() |
|
img = (img * 255).astype(np.uint8) |
|
img = Image.fromarray(img) |
|
img.save(save_dir + f"{idx}.png") |
|
|
|
if __name__ == "__main__": |
|
import sys |
|
import os |
|
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) |
|
from mesh_reconstruction.func import make_star_cameras_orthographic |
|
cameras = make_star_cameras_orthographic_py3d([0, 270, 180, 90], device="cuda", focal=1., dist=4.0) |
|
mv,proj = make_star_cameras_orthographic(4, 1) |
|
resolution = 1024 |
|
renderer1 = NormalsRenderer(mv,proj, [resolution,resolution], device="cuda") |
|
renderer2 = Pytorch3DNormalsRenderer(cameras, [resolution,resolution], device="cuda") |
|
vertices = torch.tensor([[0,0,0],[0,0,1],[0,1,0],[1,0,0]], device="cuda", dtype=torch.float32) |
|
normals = torch.tensor([[-1,-1,-1],[1,-1,-1],[-1,-1,1],[-1,1,-1]], device="cuda", dtype=torch.float32) |
|
faces = torch.tensor([[0,1,2],[0,1,3],[0,2,3],[1,2,3]], device="cuda", dtype=torch.long) |
|
|
|
import time |
|
t0 = time.time() |
|
r1 = renderer1.render(vertices, normals, faces) |
|
print("time r1:", time.time() - t0) |
|
|
|
t0 = time.time() |
|
r2 = renderer2.render(vertices, normals, faces) |
|
print("time r2:", time.time() - t0) |
|
|
|
for i in range(4): |
|
print((r1[i]-r2[i]).abs().mean(), (r1[i]+r2[i]).abs().mean()) |