|
from typing import List |
|
import torch |
|
import numpy as np |
|
from PIL import Image |
|
from pytorch3d.renderer.cameras import look_at_view_transform, OrthographicCameras, CamerasBase |
|
from pytorch3d.renderer.mesh.rasterizer import Fragments |
|
from pytorch3d.structures import Meshes |
|
from pytorch3d.renderer import ( |
|
RasterizationSettings, |
|
TexturesVertex, |
|
FoVPerspectiveCameras, |
|
FoVOrthographicCameras, |
|
) |
|
from pytorch3d.renderer import MeshRasterizer |
|
|
|
def render_pix2faces_py3d(meshes, cameras, H=512, W=512, blur_radius=0.0, faces_per_pixel=1): |
|
""" |
|
Renders pix2face of visible faces. |
|
|
|
:param mesh: Pytorch3d.structures.Meshes |
|
:param cameras: pytorch3d.renderer.Cameras |
|
:param H: target image height |
|
:param W: target image width |
|
:param blur_radius: Float distance in the range [0, 2] used to expand the face |
|
bounding boxes for rasterization. Setting blur radius |
|
results in blurred edges around the shape instead of a |
|
hard boundary. Set to 0 for no blur. |
|
:param faces_per_pixel: (int) Number of faces to keep track of per pixel. |
|
We return the nearest faces_per_pixel faces along the z-axis. |
|
""" |
|
|
|
raster_settings = RasterizationSettings( |
|
image_size=(H, W), |
|
blur_radius=blur_radius, |
|
faces_per_pixel=faces_per_pixel |
|
) |
|
rasterizer=MeshRasterizer( |
|
cameras=cameras, |
|
raster_settings=raster_settings |
|
) |
|
fragments: Fragments = rasterizer(meshes, cameras=cameras) |
|
return { |
|
"pix_to_face": fragments.pix_to_face[..., 0], |
|
} |
|
|
|
import nvdiffrast.torch as dr |
|
|
|
def _warmup(glctx, device=None): |
|
device = 'cuda' if device is None else device |
|
|
|
def tensor(*args, **kwargs): |
|
return torch.tensor(*args, device=device, **kwargs) |
|
pos = tensor([[[-0.8, -0.8, 0, 1], [0.8, -0.8, 0, 1], [-0.8, 0.8, 0, 1]]], dtype=torch.float32) |
|
tri = tensor([[0, 1, 2]], dtype=torch.int32) |
|
dr.rasterize(glctx, pos, tri, resolution=[256, 256]) |
|
|
|
class Pix2FacesRenderer: |
|
def __init__(self, device="cuda"): |
|
self._glctx = dr.RasterizeGLContext(output_db=False, device=device) |
|
self.device = device |
|
_warmup(self._glctx, device) |
|
|
|
def transform_vertices(self, meshes: Meshes, cameras: CamerasBase): |
|
vertices = cameras.transform_points_ndc(meshes.verts_padded()) |
|
|
|
perspective_correct = cameras.is_perspective() |
|
znear = cameras.get_znear() |
|
if isinstance(znear, torch.Tensor): |
|
znear = znear.min().item() |
|
z_clip = None if not perspective_correct or znear is None else znear / 2 |
|
|
|
if z_clip: |
|
vertices = vertices[vertices[..., 2] >= cameras.get_znear()][None] |
|
vertices = vertices * torch.tensor([-1, -1, 1]).to(vertices) |
|
vertices = torch.cat([vertices, torch.ones_like(vertices[..., :1])], dim=-1).to(torch.float32) |
|
return vertices |
|
|
|
def render_pix2faces_nvdiff(self, meshes: Meshes, cameras: CamerasBase, H=512, W=512): |
|
meshes = meshes.to(self.device) |
|
cameras = cameras.to(self.device) |
|
vertices = self.transform_vertices(meshes, cameras) |
|
faces = meshes.faces_packed().to(torch.int32) |
|
rast_out,_ = dr.rasterize(self._glctx, vertices, faces, resolution=(H, W), grad_db=False) |
|
pix_to_face = rast_out[..., -1].to(torch.int32) - 1 |
|
return pix_to_face |
|
|
|
pix2faces_renderer = None |
|
|
|
def get_visible_faces(meshes: Meshes, cameras: CamerasBase, resolution=1024): |
|
|
|
|
|
|
|
pix_to_face = render_pix2faces_py3d(meshes, cameras, H=resolution, W=resolution)['pix_to_face'] |
|
|
|
|
|
unique_faces = torch.unique(pix_to_face.flatten()) |
|
unique_faces = unique_faces[unique_faces != -1] |
|
return unique_faces |
|
|
|
def project_color(meshes: Meshes, cameras: CamerasBase, pil_image: Image.Image, use_alpha=True, eps=0.05, resolution=1024, device="cuda") -> dict: |
|
""" |
|
Projects color from a given image onto a 3D mesh. |
|
|
|
Args: |
|
meshes (pytorch3d.structures.Meshes): The 3D mesh object. |
|
cameras (pytorch3d.renderer.cameras.CamerasBase): The camera object. |
|
pil_image (PIL.Image.Image): The input image. |
|
use_alpha (bool, optional): Whether to use the alpha channel of the image. Defaults to True. |
|
eps (float, optional): The threshold for selecting visible faces. Defaults to 0.05. |
|
resolution (int, optional): The resolution of the projection. Defaults to 1024. |
|
device (str, optional): The device to use for computation. Defaults to "cuda". |
|
debug (bool, optional): Whether to save debug images. Defaults to False. |
|
|
|
Returns: |
|
dict: A dictionary containing the following keys: |
|
- "new_texture" (TexturesVertex): The updated texture with interpolated colors. |
|
- "valid_verts" (Tensor of [M,3]): The indices of the vertices being projected. |
|
- "valid_colors" (Tensor of [M,3]): The interpolated colors for the valid vertices. |
|
""" |
|
meshes = meshes.to(device) |
|
cameras = cameras.to(device) |
|
image = torch.from_numpy(np.array(pil_image.convert("RGBA")) / 255.).permute((2, 0, 1)).float().to(device) |
|
unique_faces = get_visible_faces(meshes, cameras, resolution=resolution) |
|
|
|
|
|
faces_normals = meshes.faces_normals_packed()[unique_faces] |
|
faces_normals = faces_normals / faces_normals.norm(dim=1, keepdim=True) |
|
world_points = cameras.unproject_points(torch.tensor([[[0., 0., 0.1], [0., 0., 0.2]]]).to(device))[0] |
|
view_direction = world_points[1] - world_points[0] |
|
view_direction = view_direction / view_direction.norm(dim=0, keepdim=True) |
|
|
|
|
|
cos_angles = (faces_normals * view_direction).sum(dim=1) |
|
assert cos_angles.mean() < 0, f"The view direction is not correct. cos_angles.mean()={cos_angles.mean()}" |
|
selected_faces = unique_faces[cos_angles < -eps] |
|
|
|
|
|
faces = meshes.faces_packed()[selected_faces] |
|
verts = torch.unique(faces.flatten()) |
|
verts_coordinates = meshes.verts_packed()[verts] |
|
|
|
|
|
pt_tensor = cameras.transform_points(verts_coordinates)[..., :2] |
|
valid = ~((pt_tensor.isnan()|(pt_tensor<-1)|(1<pt_tensor)).any(dim=1)) |
|
valid_pt = pt_tensor[valid, :] |
|
valid_idx = verts[valid] |
|
valid_color = torch.nn.functional.grid_sample(image[None].flip((-1, -2)), valid_pt[None, :, None, :], align_corners=False, padding_mode="reflection", mode="bilinear")[0, :, :, 0].T.clamp(0, 1) |
|
alpha, valid_color = valid_color[:, 3:], valid_color[:, :3] |
|
if not use_alpha: |
|
alpha = torch.ones_like(alpha) |
|
|
|
|
|
old_colors = meshes.textures.verts_features_packed() |
|
old_colors[valid_idx] = valid_color * alpha + old_colors[valid_idx] * (1 - alpha) |
|
new_texture = TexturesVertex(verts_features=[old_colors]) |
|
|
|
valid_verts_normals = meshes.verts_normals_packed()[valid_idx] |
|
valid_verts_normals = valid_verts_normals / valid_verts_normals.norm(dim=1, keepdim=True).clamp_min(0.001) |
|
cos_angles = (valid_verts_normals * view_direction).sum(dim=1) |
|
return { |
|
"new_texture": new_texture, |
|
"valid_verts": valid_idx, |
|
"valid_colors": valid_color, |
|
"valid_alpha": alpha, |
|
"cos_angles": cos_angles, |
|
} |
|
|
|
def complete_unseen_vertex_color(meshes: Meshes, valid_index: torch.Tensor) -> dict: |
|
""" |
|
meshes: the mesh with vertex color to be completed. |
|
valid_index: the index of the valid vertices, where valid means colors are fixed. [V, 1] |
|
""" |
|
valid_index = valid_index.to(meshes.device) |
|
colors = meshes.textures.verts_features_packed() |
|
V = colors.shape[0] |
|
|
|
invalid_index = torch.ones_like(colors[:, 0]).bool() |
|
invalid_index[valid_index] = False |
|
invalid_index = torch.arange(V).to(meshes.device)[invalid_index] |
|
|
|
L = meshes.laplacian_packed() |
|
E = torch.sparse_coo_tensor(torch.tensor([list(range(V))] * 2), torch.ones((V,)), size=(V, V)).to(meshes.device) |
|
L = L + E |
|
|
|
|
|
colored_count = torch.ones_like(colors[:, 0]) |
|
colored_count[invalid_index] = 0 |
|
L_invalid = torch.index_select(L, 0, invalid_index) |
|
|
|
total_colored = colored_count.sum() |
|
coloring_round = 0 |
|
stage = "uncolored" |
|
from tqdm import tqdm |
|
pbar = tqdm(miniters=100) |
|
while stage == "uncolored" or coloring_round > 0: |
|
new_color = torch.matmul(L_invalid, colors * colored_count[:, None]) |
|
new_count = torch.matmul(L_invalid, colored_count)[:, None] |
|
colors[invalid_index] = torch.where(new_count > 0, new_color / new_count, colors[invalid_index]) |
|
colored_count[invalid_index] = (new_count[:, 0] > 0).float() |
|
|
|
new_total_colored = colored_count.sum() |
|
if new_total_colored > total_colored: |
|
total_colored = new_total_colored |
|
coloring_round += 1 |
|
else: |
|
stage = "colored" |
|
coloring_round -= 1 |
|
pbar.update(1) |
|
if coloring_round > 10000: |
|
print("coloring_round > 10000, break") |
|
break |
|
assert not torch.isnan(colors).any() |
|
meshes.textures = TexturesVertex(verts_features=[colors]) |
|
return meshes |
|
|
|
def multiview_color_projection(meshes: Meshes, image_list: List[Image.Image], cameras_list: List[CamerasBase]=None, camera_focal: float = 2 / 1.35, weights=None, eps=0.05, resolution=1024, device="cuda", reweight_with_cosangle="square", use_alpha=True, confidence_threshold=0.1, complete_unseen=False, below_confidence_strategy="smooth") -> Meshes: |
|
""" |
|
Projects color from a given image onto a 3D mesh. |
|
|
|
Args: |
|
meshes (pytorch3d.structures.Meshes): The 3D mesh object, only one mesh. |
|
image_list (PIL.Image.Image): List of images. |
|
cameras_list (list): List of cameras. |
|
camera_focal (float, optional): The focal length of the camera, if cameras_list is not passed. Defaults to 2 / 1.35. |
|
weights (list, optional): List of weights for each image, for ['front', 'front_right', 'right', 'back', 'left', 'front_left']. Defaults to None. |
|
eps (float, optional): The threshold for selecting visible faces. Defaults to 0.05. |
|
resolution (int, optional): The resolution of the projection. Defaults to 1024. |
|
device (str, optional): The device to use for computation. Defaults to "cuda". |
|
reweight_with_cosangle (str, optional): Whether to reweight the color with the angle between the view direction and the vertex normal. Defaults to None. |
|
use_alpha (bool, optional): Whether to use the alpha channel of the image. Defaults to True. |
|
confidence_threshold (float, optional): The threshold for the confidence of the projected color, if final projection weight is less than this, we will use the original color. Defaults to 0.1. |
|
complete_unseen (bool, optional): Whether to complete the unseen vertex color using laplacian. Defaults to False. |
|
|
|
Returns: |
|
Meshes: the colored mesh |
|
""" |
|
|
|
if image_list is None: |
|
raise ValueError("image_list is None") |
|
if cameras_list is None: |
|
if len(image_list) == 8: |
|
cameras_list = get_8view_cameras(device, focal=camera_focal) |
|
elif len(image_list) == 6: |
|
cameras_list = get_6view_cameras(device, focal=camera_focal) |
|
elif len(image_list) == 4: |
|
cameras_list = get_4view_cameras(device, focal=camera_focal) |
|
elif len(image_list) == 2: |
|
cameras_list = get_2view_cameras(device, focal=camera_focal) |
|
else: |
|
raise ValueError("cameras_list is None, and can not be guessed from image_list") |
|
if weights is None: |
|
if len(image_list) == 8: |
|
weights = [2.0, 0.05, 0.2, 0.02, 1.0, 0.02, 0.2, 0.05] |
|
elif len(image_list) == 6: |
|
weights = [2.0, 0.05, 0.2, 1.0, 0.2, 0.05] |
|
elif len(image_list) == 4: |
|
weights = [2.0, 0.2, 1.0, 0.2] |
|
elif len(image_list) == 2: |
|
weights = [1.0, 1.0] |
|
else: |
|
raise ValueError("weights is None, and can not be guessed from image_list") |
|
|
|
|
|
meshes = meshes.clone().to(device) |
|
if weights is None: |
|
weights = [1. for _ in range(len(cameras_list))] |
|
assert len(cameras_list) == len(image_list) == len(weights) |
|
original_color = meshes.textures.verts_features_packed() |
|
assert not torch.isnan(original_color).any() |
|
texture_counts = torch.zeros_like(original_color[..., :1]) |
|
texture_values = torch.zeros_like(original_color) |
|
max_texture_counts = torch.zeros_like(original_color[..., :1]) |
|
max_texture_values = torch.zeros_like(original_color) |
|
for camera, image, weight in zip(cameras_list, image_list, weights): |
|
ret = project_color(meshes, camera, image, eps=eps, resolution=resolution, device=device, use_alpha=use_alpha) |
|
if reweight_with_cosangle == "linear": |
|
weight = (ret['cos_angles'].abs() * weight)[:, None] |
|
elif reweight_with_cosangle == "square": |
|
weight = (ret['cos_angles'].abs() ** 2 * weight)[:, None] |
|
if use_alpha: |
|
weight = weight * ret['valid_alpha'] |
|
assert weight.min() > -0.0001 |
|
texture_counts[ret['valid_verts']] += weight |
|
texture_values[ret['valid_verts']] += ret['valid_colors'] * weight |
|
max_texture_values[ret['valid_verts']] = torch.where(weight > max_texture_counts[ret['valid_verts']], ret['valid_colors'], max_texture_values[ret['valid_verts']]) |
|
max_texture_counts[ret['valid_verts']] = torch.max(max_texture_counts[ret['valid_verts']], weight) |
|
|
|
|
|
texture_values = torch.where(texture_counts > confidence_threshold, texture_values / texture_counts, texture_values) |
|
if below_confidence_strategy == "smooth": |
|
texture_values = torch.where(texture_counts <= confidence_threshold, (original_color * (confidence_threshold - texture_counts) + texture_values) / confidence_threshold, texture_values) |
|
elif below_confidence_strategy == "original": |
|
texture_values = torch.where(texture_counts <= confidence_threshold, original_color, texture_values) |
|
else: |
|
raise ValueError(f"below_confidence_strategy={below_confidence_strategy} is not supported") |
|
assert not torch.isnan(texture_values).any() |
|
meshes.textures = TexturesVertex(verts_features=[texture_values]) |
|
|
|
if complete_unseen: |
|
meshes = complete_unseen_vertex_color(meshes, torch.arange(texture_values.shape[0]).to(device)[texture_counts[:, 0] >= confidence_threshold]) |
|
ret_mesh = meshes.detach() |
|
del meshes |
|
return ret_mesh |
|
|
|
def get_camera(R, T, fov_in_degrees=60, focal_length=1 / (2**0.5), cam_type='fov'): |
|
if cam_type == 'fov': |
|
camera = FoVPerspectiveCameras(device=R.device, R=R, T=T, fov=fov_in_degrees, degrees=True) |
|
else: |
|
focal_length = 1 / focal_length |
|
camera = FoVOrthographicCameras(device=R.device, R=R, T=T, min_x=-focal_length, max_x=focal_length, min_y=-focal_length, max_y=focal_length) |
|
return camera |
|
|
|
def get_cameras_list(azim_list, device, focal=2/1.35, dist=1.1): |
|
ret = [] |
|
for azim in azim_list: |
|
R, T = look_at_view_transform(dist, 0, azim) |
|
cameras: OrthographicCameras = get_camera(R, T, focal_length=focal, cam_type='orthogonal').to(device) |
|
ret.append(cameras) |
|
return ret |
|
|
|
def get_8view_cameras(device, focal=2/1.35): |
|
return get_cameras_list(azim_list = [180, 225, 270, 315, 0, 45, 90, 135], device=device, focal=focal) |
|
|
|
def get_6view_cameras(device, focal=2/1.35): |
|
return get_cameras_list(azim_list = [180, 225, 270, 0, 90, 135], device=device, focal=focal) |
|
|
|
def get_4view_cameras(device, focal=2/1.35): |
|
return get_cameras_list(azim_list = [180, 270, 0, 90], device=device, focal=focal) |
|
|
|
def get_2view_cameras(device, focal=2/1.35): |
|
return get_cameras_list(azim_list = [180, 0], device=device, focal=focal) |
|
|
|
def get_multiple_view_cameras(device, focal=2/1.35, offset=180, num_views=8, dist=1.1): |
|
return get_cameras_list(azim_list = (np.linspace(0, 360, num_views+1)[:-1] + offset) % 360, device=device, focal=focal, dist=dist) |
|
|
|
def align_with_alpha_bbox(source_img, target_img, final_size=1024): |
|
|
|
|
|
source_img = source_img.convert("RGBA") |
|
target_img = target_img.convert("RGBA").resize((final_size, final_size)) |
|
source_np = np.array(source_img) |
|
target_np = np.array(target_img) |
|
source_alpha = source_np[:, :, 3] |
|
target_alpha = target_np[:, :, 3] |
|
bbox_source_min, bbox_source_max = np.argwhere(source_alpha > 0).min(axis=0), np.argwhere(source_alpha > 0).max(axis=0) |
|
bbox_target_min, bbox_target_max = np.argwhere(target_alpha > 0).min(axis=0), np.argwhere(target_alpha > 0).max(axis=0) |
|
source_content = source_np[bbox_source_min[0]:bbox_source_max[0]+1, bbox_source_min[1]:bbox_source_max[1]+1, :] |
|
|
|
source_content = Image.fromarray(source_content).resize((bbox_target_max[1]-bbox_target_min[1]+1, bbox_target_max[0]-bbox_target_min[0]+1), resample=Image.BICUBIC) |
|
target_np[bbox_target_min[0]:bbox_target_max[0]+1, bbox_target_min[1]:bbox_target_max[1]+1, :] = np.array(source_content) |
|
return Image.fromarray(target_np) |
|
|
|
def load_image_list_from_mvdiffusion(mvdiffusion_path, front_from_pil_or_path=None): |
|
import os |
|
image_list = [] |
|
for dir in ['front', 'front_right', 'right', 'back', 'left', 'front_left']: |
|
image_path = os.path.join(mvdiffusion_path, f"rgb_000_{dir}.png") |
|
pil = Image.open(image_path) |
|
if dir == 'front': |
|
if front_from_pil_or_path is not None: |
|
if isinstance(front_from_pil_or_path, str): |
|
replace_pil = Image.open(front_from_pil_or_path) |
|
else: |
|
replace_pil = front_from_pil_or_path |
|
|
|
pil = align_with_alpha_bbox(replace_pil, pil, final_size=1024) |
|
image_list.append(pil) |
|
return image_list |
|
|
|
def load_image_list_from_img_grid(img_grid_path, resolution = 1024): |
|
img_list = [] |
|
grid = Image.open(img_grid_path) |
|
w, h = grid.size |
|
for row in range(0, h, resolution): |
|
for col in range(0, w, resolution): |
|
img_list.append(grid.crop((col, row, col + resolution, row + resolution))) |
|
return img_list |