|
import onnxruntime |
|
import torch |
|
|
|
providers = [ |
|
('TensorrtExecutionProvider', { |
|
'device_id': 0, |
|
'trt_max_workspace_size': 8 * 1024 * 1024 * 1024, |
|
'trt_fp16_enable': True, |
|
'trt_engine_cache_enable': True, |
|
}), |
|
('CUDAExecutionProvider', { |
|
'device_id': 0, |
|
'arena_extend_strategy': 'kSameAsRequested', |
|
'gpu_mem_limit': 8 * 1024 * 1024 * 1024, |
|
'cudnn_conv_algo_search': 'HEURISTIC', |
|
}) |
|
] |
|
|
|
def load_onnx(file_path: str): |
|
assert file_path.endswith(".onnx") |
|
sess_opt = onnxruntime.SessionOptions() |
|
ort_session = onnxruntime.InferenceSession(file_path, sess_opt=sess_opt, providers=providers) |
|
return ort_session |
|
|
|
|
|
def load_onnx_caller(file_path: str, single_output=False): |
|
ort_session = load_onnx(file_path) |
|
def caller(*args): |
|
torch_input = isinstance(args[0], torch.Tensor) |
|
if torch_input: |
|
torch_input_dtype = args[0].dtype |
|
torch_input_device = args[0].device |
|
|
|
assert all([isinstance(arg, torch.Tensor) for arg in args]), "All inputs should be torch.Tensor, if first input is torch.Tensor" |
|
assert all([arg.dtype == torch_input_dtype for arg in args]), "All inputs should have same dtype, if first input is torch.Tensor" |
|
assert all([arg.device == torch_input_device for arg in args]), "All inputs should have same device, if first input is torch.Tensor" |
|
args = [arg.cpu().float().numpy() for arg in args] |
|
|
|
ort_inputs = {ort_session.get_inputs()[idx].name: args[idx] for idx in range(len(args))} |
|
ort_outs = ort_session.run(None, ort_inputs) |
|
|
|
if torch_input: |
|
ort_outs = [torch.tensor(ort_out, dtype=torch_input_dtype, device=torch_input_device) for ort_out in ort_outs] |
|
|
|
if single_output: |
|
return ort_outs[0] |
|
return ort_outs |
|
return caller |
|
|