|
from tqdm import tqdm |
|
from PIL import Image |
|
import torch |
|
from typing import List |
|
from mesh_reconstruction.remesh import calc_vertex_normals |
|
from mesh_reconstruction.opt import MeshOptimizer |
|
from mesh_reconstruction.func import make_star_cameras_orthographic |
|
from mesh_reconstruction.render import NormalsRenderer, Pytorch3DNormalsRenderer |
|
from scripts.project_mesh import multiview_color_projection, get_cameras_list |
|
from scripts.utils import to_py3d_mesh, from_py3d_mesh, init_target |
|
|
|
def run_mesh_refine(vertices, faces, pils: List[Image.Image], steps=100, start_edge_len=0.02, end_edge_len=0.005, decay=0.99, update_normal_interval=10, update_warmup=10, return_mesh=True, process_inputs=True, process_outputs=True): |
|
if process_inputs: |
|
vertices = vertices * 2 / 1.35 |
|
vertices[..., [0, 2]] = - vertices[..., [0, 2]] |
|
|
|
poission_steps = [] |
|
|
|
assert len(pils) == 4 |
|
mv,proj = make_star_cameras_orthographic(4, 1) |
|
renderer = Pytorch3DNormalsRenderer(mv,proj,list(pils[0].size)) |
|
|
|
target_images = init_target(pils, new_bkgd=(0., 0., 0.)) |
|
|
|
target_images = target_images[[0, 3, 2, 1]] |
|
|
|
|
|
opt = MeshOptimizer(vertices,faces, ramp=5, edge_len_lims=(end_edge_len, start_edge_len), local_edgelen=False, laplacian_weight=0.02) |
|
|
|
vertices = opt.vertices |
|
alpha_init = None |
|
|
|
mask = target_images[..., -1] < 0.5 |
|
|
|
for i in tqdm(range(steps)): |
|
opt.zero_grad() |
|
opt._lr *= decay |
|
normals = calc_vertex_normals(vertices,faces) |
|
images = renderer.render(vertices,normals,faces) |
|
if alpha_init is None: |
|
alpha_init = images.detach() |
|
|
|
if i < update_warmup or i % update_normal_interval == 0: |
|
with torch.no_grad(): |
|
py3d_mesh = to_py3d_mesh(vertices, faces, normals) |
|
cameras = get_cameras_list(azim_list = [0, 90, 180, 270], device=vertices.device, focal=1.) |
|
_, _, target_normal = from_py3d_mesh(multiview_color_projection(py3d_mesh, pils, cameras_list=cameras, weights=[2.0, 0.8, 1.0, 0.8], confidence_threshold=0.1, complete_unseen=False, below_confidence_strategy='original', reweight_with_cosangle='linear')) |
|
target_normal = target_normal * 2 - 1 |
|
target_normal = torch.nn.functional.normalize(target_normal, dim=-1) |
|
debug_images = renderer.render(vertices,target_normal,faces) |
|
|
|
d_mask = images[..., -1] > 0.5 |
|
loss_debug_l2 = (images[..., :3][d_mask] - debug_images[..., :3][d_mask]).pow(2).mean() |
|
|
|
loss_alpha_target_mask_l2 = (images[..., -1][mask] - target_images[..., -1][mask]).pow(2).mean() |
|
|
|
loss = loss_debug_l2 + loss_alpha_target_mask_l2 |
|
|
|
|
|
loss_oob = (vertices.abs() > 0.99).float().mean() * 10 |
|
loss = loss + loss_oob |
|
|
|
loss.backward() |
|
opt.step() |
|
|
|
vertices,faces = opt.remesh(poisson=(i in poission_steps)) |
|
|
|
vertices, faces = vertices.detach(), faces.detach() |
|
|
|
if process_outputs: |
|
vertices = vertices / 2 * 1.35 |
|
vertices[..., [0, 2]] = - vertices[..., [0, 2]] |
|
|
|
if return_mesh: |
|
return to_py3d_mesh(vertices, faces) |
|
else: |
|
return vertices, faces |
|
|