|
from types import FunctionType |
|
from typing import Any, Dict, List |
|
from diffusers import UNet2DConditionModel |
|
import torch |
|
from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel, ImageProjection |
|
from diffusers.models.attention_processor import Attention, AttnProcessor, AttnProcessor2_0, XFormersAttnProcessor |
|
from dataclasses import dataclass, field |
|
from diffusers.loaders import IPAdapterMixin |
|
from custum_3d_diffusion.custum_modules.attention_processors import add_extra_processor, switch_extra_processor, add_multiview_processor, switch_multiview_processor, add_switch, change_switch |
|
|
|
@dataclass |
|
class AttnConfig: |
|
""" |
|
* CrossAttention: Attention module (inherits knowledge), LoRA module (achieves fine-tuning), IPAdapter module (achieves conceptual control). |
|
* SelfAttention: Attention module (inherits knowledge), LoRA module (achieves fine-tuning), Reference Attention module (achieves pixel-level control). |
|
* Multiview Attention module: Multiview Attention module (achieves multi-view consistency). |
|
* Cross Modality Attention module: Cross Modality Attention module (achieves multi-modality consistency). |
|
|
|
For setups: |
|
train_xxx_lr is implemented in the U-Net architecture. |
|
enable_xxx_lora is implemented in the U-Net architecture. |
|
enable_xxx_ip is implemented in the processor and U-Net architecture. |
|
enable_xxx_ref_proj_in is implemented in the processor. |
|
""" |
|
latent_size: int = 64 |
|
|
|
train_lr: float = 0 |
|
|
|
|
|
train_cross_attn_lr: float = 0 |
|
train_cross_attn_lora_lr: float = 0 |
|
train_cross_attn_ip_lr: float = 0 |
|
init_cross_attn_lora: bool = False |
|
enable_cross_attn_lora: bool = False |
|
init_cross_attn_ip: bool = False |
|
enable_cross_attn_ip: bool = False |
|
cross_attn_lora_rank: int = 64 |
|
cross_attn_lora_only_kv: bool = False |
|
ipadapter_pretrained_name: str = "h94/IP-Adapter" |
|
ipadapter_subfolder_name: str = "models" |
|
ipadapter_weight_name: str = "ip-adapter-plus_sd15.safetensors" |
|
ipadapter_effect_on: str = "all" |
|
|
|
|
|
train_self_attn_lr: float = 0 |
|
train_self_attn_lora_lr: float = 0 |
|
init_self_attn_lora: bool = False |
|
enable_self_attn_lora: bool = False |
|
self_attn_lora_rank: int = 64 |
|
self_attn_lora_only_kv: bool = False |
|
|
|
train_self_attn_ref_lr: float = 0 |
|
train_ref_unet_lr: float = 0 |
|
init_self_attn_ref: bool = False |
|
enable_self_attn_ref: bool = False |
|
self_attn_ref_other_model_name: str = "" |
|
self_attn_ref_position: str = "attn1" |
|
self_attn_ref_pixel_wise_crosspond: bool = False |
|
self_attn_ref_chain_pos: str = "parralle" |
|
self_attn_ref_effect_on: str = "all" |
|
self_attn_ref_zero_init: bool = True |
|
use_simple3d_attn: bool = False |
|
|
|
|
|
init_multiview_attn: bool = False |
|
enable_multiview_attn: bool = False |
|
multiview_attn_position: str = "attn1" |
|
multiview_chain_pose: str = "parralle" |
|
num_modalities: int = 1 |
|
use_mv_joint_attn: bool = False |
|
|
|
|
|
init_unet_path: str = "runwayml/stable-diffusion-v1-5" |
|
init_num_cls_label: int = 0 |
|
cls_labels: List[int] = field(default_factory=lambda: []) |
|
cls_label_type: str = "embedding" |
|
cat_condition: bool = False |
|
|
|
class Configurable: |
|
attn_config: AttnConfig |
|
|
|
def set_config(self, attn_config: AttnConfig): |
|
raise NotImplementedError() |
|
|
|
def update_config(self, attn_config: AttnConfig): |
|
self.attn_config = attn_config |
|
|
|
def do_set_config(self, attn_config: AttnConfig): |
|
self.set_config(attn_config) |
|
for name, module in self.named_modules(): |
|
if isinstance(module, Configurable): |
|
if hasattr(module, "do_set_config"): |
|
module.do_set_config(attn_config) |
|
else: |
|
print(f"Warning: {name} has no attribute do_set_config, but is an instance of Configurable") |
|
module.attn_config = attn_config |
|
|
|
def do_update_config(self, attn_config: AttnConfig): |
|
self.update_config(attn_config) |
|
for name, module in self.named_modules(): |
|
if isinstance(module, Configurable): |
|
if hasattr(module, "do_update_config"): |
|
module.do_update_config(attn_config) |
|
else: |
|
print(f"Warning: {name} has no attribute do_update_config, but is an instance of Configurable") |
|
module.attn_config = attn_config |
|
|
|
from diffusers import ModelMixin |
|
class UnifieldWrappedUNet(UNet2DConditionModel): |
|
forward_hook: FunctionType |
|
|
|
def forward(self, *args, **kwargs): |
|
if hasattr(self, 'forward_hook'): |
|
return self.forward_hook(super().forward, *args, **kwargs) |
|
return super().forward(*args, **kwargs) |
|
|
|
|
|
class ConfigurableUNet2DConditionModel(Configurable, IPAdapterMixin): |
|
unet: UNet2DConditionModel |
|
|
|
cls_embedding_param_dict = {} |
|
cross_attn_lora_param_dict = {} |
|
self_attn_lora_param_dict = {} |
|
cross_attn_param_dict = {} |
|
self_attn_param_dict = {} |
|
ipadapter_param_dict = {} |
|
ref_attn_param_dict = {} |
|
ref_unet_param_dict = {} |
|
multiview_attn_param_dict = {} |
|
other_param_dict = {} |
|
|
|
rev_param_name_mapping = {} |
|
|
|
class_labels = [] |
|
def set_class_labels(self, class_labels: torch.Tensor): |
|
if self.attn_config.init_num_cls_label != 0: |
|
self.class_labels = class_labels.to(self.unet.device).long() |
|
|
|
def __init__(self, init_config: AttnConfig, weight_dtype) -> None: |
|
super().__init__() |
|
self.weight_dtype = weight_dtype |
|
self.set_config(init_config) |
|
|
|
def enable_xformers_memory_efficient_attention(self): |
|
self.unet.enable_xformers_memory_efficient_attention |
|
def recursive_add_processors(name: str, module: torch.nn.Module): |
|
for sub_name, child in module.named_children(): |
|
recursive_add_processors(f"{name}.{sub_name}", child) |
|
|
|
if isinstance(module, Attention): |
|
if hasattr(module, 'xformers_not_supported'): |
|
return |
|
old_processor = module.get_processor() |
|
if isinstance(old_processor, (AttnProcessor, AttnProcessor2_0)): |
|
module.set_use_memory_efficient_attention_xformers(True) |
|
|
|
for name, module in self.unet.named_children(): |
|
recursive_add_processors(name, module) |
|
|
|
def __getattr__(self, name: str) -> Any: |
|
try: |
|
return super().__getattr__(name) |
|
except AttributeError: |
|
return getattr(self.unet, name) |
|
|
|
|
|
|
|
def register_modules(self, **kwargs): |
|
for name, module in kwargs.items(): |
|
|
|
setattr(self, name, module) |
|
|
|
def register_to_config(self, **kwargs): |
|
pass |
|
|
|
def unload_ip_adapter(self): |
|
raise NotImplementedError() |
|
|
|
|
|
|
|
def get_refunet(self): |
|
if self.attn_config.self_attn_ref_other_model_name == "self": |
|
return self.unet |
|
else: |
|
return self.unet.ref_unet |
|
|
|
def set_config(self, attn_config: AttnConfig): |
|
self.attn_config = attn_config |
|
|
|
unet_type = UnifieldWrappedUNet |
|
|
|
|
|
unet_kwargs = {} |
|
if attn_config.init_num_cls_label > 0: |
|
if attn_config.cls_label_type == "embedding": |
|
unet_kwargs = { |
|
"num_class_embeds": attn_config.init_num_cls_label, |
|
"device_map": None, |
|
"low_cpu_mem_usage": False, |
|
"class_embed_type": None, |
|
} |
|
else: |
|
raise ValueError(f"cls_label_type {attn_config.cls_label_type} is not supported") |
|
|
|
self.unet: UnifieldWrappedUNet = unet_type.from_pretrained( |
|
attn_config.init_unet_path, subfolder="unet", torch_dtype=self.weight_dtype, |
|
**unet_kwargs |
|
) |
|
assert isinstance(self.unet, UnifieldWrappedUNet) |
|
self.unet.forward_hook = self.unet_forward_hook |
|
|
|
if self.attn_config.cat_condition: |
|
|
|
if self.unet.config.in_channels != 8: |
|
self.unet.register_to_config(in_channels=self.unet.config.in_channels * 2) |
|
|
|
doubled_conv_in = torch.nn.Conv2d(self.unet.conv_in.in_channels * 2, self.unet.conv_in.out_channels, self.unet.conv_in.kernel_size, self.unet.conv_in.stride, self.unet.conv_in.padding) |
|
doubled_conv_in.weight.data = torch.cat([self.unet.conv_in.weight.data, torch.zeros_like(self.unet.conv_in.weight.data)], dim=1) |
|
doubled_conv_in.bias.data = self.unet.conv_in.bias.data |
|
self.unet.conv_in = doubled_conv_in |
|
|
|
used_param_ids = set() |
|
|
|
if attn_config.init_cross_attn_lora: |
|
|
|
from peft import LoraConfig |
|
from peft.utils import get_peft_model_state_dict |
|
if attn_config.cross_attn_lora_only_kv: |
|
target_modules=["attn2.to_k", "attn2.to_v"] |
|
else: |
|
target_modules=["attn2.to_k", "attn2.to_q", "attn2.to_v", "attn2.to_out.0"] |
|
lora_config: LoraConfig = LoraConfig( |
|
r=attn_config.cross_attn_lora_rank, |
|
lora_alpha=attn_config.cross_attn_lora_rank, |
|
init_lora_weights="gaussian", |
|
target_modules=target_modules, |
|
) |
|
adapter_name="cross_attn_lora" |
|
self.unet.add_adapter(lora_config, adapter_name=adapter_name) |
|
|
|
self.cross_attn_lora_param_dict = {id(param): param for name, param in self.unet.named_parameters() if adapter_name in name and id(param) not in used_param_ids} |
|
used_param_ids.update(self.cross_attn_lora_param_dict.keys()) |
|
|
|
if attn_config.init_self_attn_lora: |
|
|
|
from peft import LoraConfig |
|
if attn_config.self_attn_lora_only_kv: |
|
target_modules=["attn1.to_k", "attn1.to_v"] |
|
else: |
|
target_modules=["attn1.to_k", "attn1.to_q", "attn1.to_v", "attn1.to_out.0"] |
|
lora_config: LoraConfig = LoraConfig( |
|
r=attn_config.self_attn_lora_rank, |
|
lora_alpha=attn_config.self_attn_lora_rank, |
|
init_lora_weights="gaussian", |
|
target_modules=target_modules, |
|
) |
|
adapter_name="self_attn_lora" |
|
self.unet.add_adapter(lora_config, adapter_name=adapter_name) |
|
|
|
self.self_attn_lora_param_dict = {id(param): param for name, param in self.unet.named_parameters() if adapter_name in name and id(param) not in used_param_ids} |
|
used_param_ids.update(self.self_attn_lora_param_dict.keys()) |
|
|
|
if attn_config.init_num_cls_label != 0: |
|
self.cls_embedding_param_dict = {id(param): param for param in self.unet.class_embedding.parameters()} |
|
used_param_ids.update(self.cls_embedding_param_dict.keys()) |
|
self.set_class_labels(torch.tensor(attn_config.cls_labels).long()) |
|
|
|
if attn_config.init_cross_attn_ip: |
|
self.image_encoder = None |
|
|
|
self.load_ip_adapter( |
|
attn_config.ipadapter_pretrained_name, |
|
subfolder=attn_config.ipadapter_subfolder_name, |
|
weight_name=attn_config.ipadapter_weight_name |
|
) |
|
|
|
from diffusers.models.attention_processor import IPAdapterAttnProcessor, IPAdapterAttnProcessor2_0 |
|
add_switch(self.unet, module_filter=lambda x: isinstance(x, (IPAdapterAttnProcessor, IPAdapterAttnProcessor2_0)), switch_dict_fn=lambda x: {"ipadapter": x, "default": XFormersAttnProcessor()}, switch_name="ipadapter_switch", enabled_proc="ipadapter") |
|
|
|
|
|
self.ipadapter_param_dict = {id(param): param for param in self.unet.encoder_hid_proj.parameters() if id(param) not in used_param_ids} |
|
used_param_ids.update(self.ipadapter_param_dict.keys()) |
|
print("DEBUG: ipadapter_param_dict len in encoder_hid_proj", len(self.ipadapter_param_dict)) |
|
for name, processor in self.unet.attn_processors.items(): |
|
if hasattr(processor, "to_k_ip"): |
|
self.ipadapter_param_dict.update({id(param): param for param in processor.parameters()}) |
|
print(f"DEBUG: ipadapter_param_dict len in all", len(self.ipadapter_param_dict)) |
|
|
|
ref_unet = None |
|
if attn_config.init_self_attn_ref: |
|
|
|
if attn_config.self_attn_ref_other_model_name == "self": |
|
raise NotImplementedError("self reference is not fully implemented") |
|
else: |
|
ref_unet: UNet2DConditionModel = UNet2DConditionModel.from_pretrained( |
|
attn_config.self_attn_ref_other_model_name, subfolder="unet", torch_dtype=self.unet.dtype |
|
) |
|
ref_unet.to(self.unet.device) |
|
if self.attn_config.train_ref_unet_lr == 0: |
|
ref_unet.eval() |
|
ref_unet.requires_grad_(False) |
|
else: |
|
ref_unet.train() |
|
|
|
add_extra_processor( |
|
model=ref_unet, |
|
enable_filter=lambda name: name.endswith(f"{attn_config.self_attn_ref_position}.processor"), |
|
mode='extract', |
|
with_proj_in=False, |
|
pixel_wise_crosspond=False, |
|
) |
|
|
|
processor_dict = add_extra_processor( |
|
model=self.unet, |
|
enable_filter=lambda name: name.endswith(f"{attn_config.self_attn_ref_position}.processor"), |
|
mode='inject', |
|
with_proj_in=False, |
|
pixel_wise_crosspond=attn_config.self_attn_ref_pixel_wise_crosspond, |
|
crosspond_effect_on=attn_config.self_attn_ref_effect_on, |
|
crosspond_chain_pos=attn_config.self_attn_ref_chain_pos, |
|
simple_3d=attn_config.use_simple3d_attn, |
|
) |
|
self.ref_unet_param_dict = {id(param): param for name, param in ref_unet.named_parameters() if id(param) not in used_param_ids and (attn_config.self_attn_ref_position in name)} |
|
if attn_config.self_attn_ref_chain_pos != "after": |
|
|
|
for name, param in ref_unet.named_parameters(): |
|
if id(param) in self.ref_unet_param_dict and ('up_blocks.3.attentions.2.transformer_blocks.0.' in name): |
|
self.ref_unet_param_dict.pop(id(param)) |
|
used_param_ids.update(self.ref_unet_param_dict.keys()) |
|
|
|
self.ref_attn_param_dict = {id(param): param for name, param in processor_dict.named_parameters() if id(param) not in used_param_ids} |
|
used_param_ids.update(self.ref_attn_param_dict.keys()) |
|
|
|
if attn_config.init_multiview_attn: |
|
processor_dict = add_multiview_processor( |
|
model = self.unet, |
|
enable_filter = lambda name: name.endswith(f"{attn_config.multiview_attn_position}.processor"), |
|
num_modalities = attn_config.num_modalities, |
|
base_img_size = attn_config.latent_size, |
|
chain_pos = attn_config.multiview_chain_pose, |
|
) |
|
|
|
self.multiview_attn_param_dict = {id(param): param for name, param in processor_dict.named_parameters() if id(param) not in used_param_ids} |
|
used_param_ids.update(self.multiview_attn_param_dict.keys()) |
|
|
|
|
|
self.cross_attn_param_dict = {id(param): param for name, param in self.unet.named_parameters() if "attn2" in name and id(param) not in used_param_ids} |
|
used_param_ids.update(self.cross_attn_param_dict.keys()) |
|
|
|
|
|
self.self_attn_param_dict = {id(param): param for name, param in self.unet.named_parameters() if "attn1" in name and id(param) not in used_param_ids} |
|
used_param_ids.update(self.self_attn_param_dict.keys()) |
|
|
|
|
|
self.other_param_dict = {id(param): param for name, param in self.unet.named_parameters() if id(param) not in used_param_ids} |
|
|
|
if ref_unet is not None: |
|
self.unet.ref_unet = ref_unet |
|
|
|
self.rev_param_name_mapping = {id(param): name for name, param in self.unet.named_parameters()} |
|
|
|
self.update_config(attn_config, force_update=True) |
|
return self.unet |
|
|
|
_attn_keys_to_update = ["enable_cross_attn_lora", "enable_cross_attn_ip", "enable_self_attn_lora", "enable_self_attn_ref", "enable_multiview_attn", "cls_labels"] |
|
|
|
def update_config(self, attn_config: AttnConfig, force_update=False): |
|
assert isinstance(self.unet, UNet2DConditionModel), "unet must be an instance of UNet2DConditionModel" |
|
|
|
need_to_update = False |
|
|
|
for key in self._attn_keys_to_update: |
|
if getattr(self.attn_config, key) != getattr(attn_config, key): |
|
need_to_update = True |
|
break |
|
if not force_update and not need_to_update: |
|
return |
|
|
|
self.set_class_labels(torch.tensor(attn_config.cls_labels).long()) |
|
|
|
|
|
if self.attn_config.init_cross_attn_lora or self.attn_config.init_self_attn_lora: |
|
if attn_config.enable_cross_attn_lora or attn_config.enable_self_attn_lora: |
|
cross_attn_lora_weight = 1. if attn_config.enable_cross_attn_lora > 0 else 0 |
|
self_attn_lora_weight = 1. if attn_config.enable_self_attn_lora > 0 else 0 |
|
self.unet.set_adapters(["cross_attn_lora", "self_attn_lora"], weights=[cross_attn_lora_weight, self_attn_lora_weight]) |
|
else: |
|
self.unet.disable_adapters() |
|
|
|
|
|
if self.attn_config.init_cross_attn_ip: |
|
if attn_config.enable_cross_attn_ip: |
|
change_switch(self.unet, "ipadapter_switch", "ipadapter") |
|
else: |
|
change_switch(self.unet, "ipadapter_switch", "default") |
|
|
|
|
|
if self.attn_config.init_self_attn_ref: |
|
if attn_config.enable_self_attn_ref: |
|
switch_extra_processor(self.unet, enable_filter=lambda name: name.endswith(f"{attn_config.self_attn_ref_position}.processor")) |
|
else: |
|
switch_extra_processor(self.unet, enable_filter=lambda name: False) |
|
|
|
|
|
if self.attn_config.init_multiview_attn: |
|
if attn_config.enable_multiview_attn: |
|
switch_multiview_processor(self.unet, enable_filter=lambda name: name.endswith(f"{attn_config.multiview_attn_position}.processor")) |
|
else: |
|
switch_multiview_processor(self.unet, enable_filter=lambda name: False) |
|
|
|
|
|
for key in self._attn_keys_to_update: |
|
setattr(self.attn_config, key, getattr(attn_config, key)) |
|
|
|
def unet_forward_hook(self, raw_forward, sample: torch.FloatTensor, timestep: torch.Tensor, encoder_hidden_states: torch.Tensor, *args, cross_attention_kwargs=None, condition_latents=None, class_labels=None, noisy_condition_input=False, cond_pixels_clip=None, **kwargs): |
|
if class_labels is None and len(self.class_labels) > 0: |
|
class_labels = self.class_labels.repeat(sample.shape[0] // self.class_labels.shape[0]).to(sample.device) |
|
elif self.attn_config.init_num_cls_label != 0: |
|
assert class_labels is not None, "class_labels should be passed if self.class_labels is empty and self.attn_config.init_num_cls_label is not 0" |
|
if class_labels is not None: |
|
if self.attn_config.cls_label_type == "embedding": |
|
pass |
|
else: |
|
raise ValueError(f"cls_label_type {self.attn_config.cls_label_type} is not supported") |
|
if self.attn_config.init_self_attn_ref and self.attn_config.enable_self_attn_ref: |
|
|
|
ref_dict = {} |
|
ref_unet = self.get_refunet().to(sample.device) |
|
assert condition_latents is not None |
|
if self.attn_config.self_attn_ref_other_model_name == "self": |
|
raise NotImplementedError() |
|
else: |
|
with torch.no_grad(): |
|
cond_encoder_hidden_states = encoder_hidden_states.reshape(condition_latents.shape[0], -1, *encoder_hidden_states.shape[1:])[:, 0] |
|
if timestep.dim() == 0: |
|
cond_timestep = timestep |
|
else: |
|
cond_timestep = timestep.reshape(condition_latents.shape[0], -1)[:, 0] |
|
ref_unet(condition_latents, cond_timestep, cond_encoder_hidden_states, cross_attention_kwargs=dict(ref_dict=ref_dict)) |
|
|
|
|
|
if cross_attention_kwargs is None: |
|
cross_attention_kwargs = {} |
|
cross_attention_kwargs.update(ref_dict=ref_dict, mode='inject') |
|
elif condition_latents is not None: |
|
if not hasattr(self, 'condition_latents_raised'): |
|
print("Warning! condition_latents is not None, but self_attn_ref is not enabled! This warning will only be raised once.") |
|
self.condition_latents_raised = True |
|
|
|
if self.attn_config.init_cross_attn_ip: |
|
raise NotImplementedError() |
|
|
|
if self.attn_config.cat_condition: |
|
assert condition_latents is not None |
|
B = condition_latents.shape[0] |
|
cat_latents = condition_latents.reshape(B, 1, *condition_latents.shape[1:]).repeat(1, sample.shape[0] // B, 1, 1, 1).reshape(*sample.shape) |
|
sample = torch.cat([sample, cat_latents], dim=1) |
|
|
|
return raw_forward(sample, timestep, encoder_hidden_states, *args, cross_attention_kwargs=cross_attention_kwargs, class_labels=class_labels, **kwargs) |
|
|