File size: 23,029 Bytes
68404e4 5b21912 68404e4 5b21912 68404e4 5b21912 68404e4 5b21912 68404e4 5b21912 68404e4 5613724 5b21912 5613724 68404e4 1ad30ed 68404e4 5613724 68404e4 5613724 68404e4 5b21912 68404e4 5b21912 68404e4 5613724 68404e4 5613724 68404e4 5613724 68404e4 5b21912 68404e4 5b21912 68404e4 5b21912 68404e4 5613724 5b21912 5613724 68404e4 5b21912 5613724 5b21912 5613724 5b21912 5613724 5b21912 5613724 5b21912 5613724 5b21912 5613724 5b21912 5613724 5b21912 5613724 5b21912 5613724 5b21912 5613724 5b21912 5613724 5b21912 5613724 5b21912 5613724 5b21912 5613724 5b21912 5613724 68404e4 5b21912 5613724 5b21912 68404e4 5b21912 5613724 5b21912 5613724 5b21912 5613724 5b21912 5613724 68404e4 5b21912 5613724 5b21912 68404e4 5b21912 5613724 5b21912 68404e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 |
#!/usr/bin/env python
"""
This script runs a Gradio App for the Open-Sora model.
Usage:
python demo.py <config-path>
"""
import argparse
import datetime
import importlib
import os
import subprocess
import sys
from tempfile import NamedTemporaryFile
import spaces
import torch
import gradio as gr
MODEL_TYPES = ["v1.2-stage3"]
WATERMARK_PATH = "./assets/images/watermark/watermark.png"
CONFIG_MAP = {
"v1.2-stage3": "configs/opensora-v1-2/inference/sample.py",
}
HF_STDIT_MAP = {"v1.2-stage3": "hpcai-tech/OpenSora-STDiT-v3"}
# ============================
# Prepare Runtime Environment
# ============================
def install_dependencies(enable_optimization=False):
"""
Install the required dependencies for the demo if they are not already installed.
"""
def _is_package_available(name) -> bool:
try:
importlib.import_module(name)
return True
except (ImportError, ModuleNotFoundError):
return False
if enable_optimization:# flash attention is needed no matter optimization is enabled or not
# because Hugging Face transformers detects flash_attn is a dependency in STDiT
# thus, we need to install it no matter what
if not _is_package_available("flash_attn"):
subprocess.run(
f"{sys.executable} -m pip install flash-attn --no-build-isolation",
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
shell=True,
)
# install apex for fused layernorm
if not _is_package_available("apex"):
subprocess.run(
f'{sys.executable} -m pip install -v --disable-pip-version-check --no-cache-dir --no-build-isolation --config-settings "--build-option=--cpp_ext" --config-settings "--build-option=--cuda_ext" git+https://github.com/NVIDIA/apex.git',
shell=True,
)
# install ninja
if not _is_package_available("ninja"):
subprocess.run(f"{sys.executable} -m pip install ninja", shell=True)
# install xformers
if not _is_package_available("xformers"):
subprocess.run(
f"{sys.executable} -m pip install -v -U git+https://github.com/facebookresearch/xformers.git@main#egg=xformers",
shell=True,
)
# ============================
# Model-related
# ============================
def read_config(config_path):
"""
Read the configuration file.
"""
from mmengine.config import Config
return Config.fromfile(config_path)
def build_models(model_type, config, enable_optimization=False):
"""
Build the models for the given model type and configuration.
"""
# build vae
from opensora.registry import MODELS, build_module
vae = build_module(config.vae, MODELS).cuda()
# build text encoder
text_encoder = build_module(config.text_encoder, MODELS) # T5 must be fp32
text_encoder.t5.model = text_encoder.t5.model.cuda()
# build stdit
# we load model from HuggingFace directly so that we don't need to
# handle model download logic in HuggingFace Space
from opensora.models.stdit.stdit3 import STDiT3
stdit = STDiT3.from_pretrained(HF_STDIT_MAP[model_type])
stdit = stdit.cuda()
# build scheduler
from opensora.registry import SCHEDULERS
scheduler = build_module(config.scheduler, SCHEDULERS)
# hack for classifier-free guidance
text_encoder.y_embedder = stdit.y_embedder
# move modelst to device
vae = vae.to(torch.bfloat16).eval()
text_encoder.t5.model = text_encoder.t5.model.eval() # t5 must be in fp32
stdit = stdit.to(torch.bfloat16).eval()
# clear cuda
torch.cuda.empty_cache()
return vae, text_encoder, stdit, scheduler
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--model-type",
default="v1.2-stage3",
choices=MODEL_TYPES,
help=f"The type of model to run for the Gradio App, can only be {MODEL_TYPES}",
)
parser.add_argument("--output", default="./outputs", type=str, help="The path to the output folder")
parser.add_argument("--port", default=None, type=int, help="The port to run the Gradio App on.")
parser.add_argument("--host", default="0.0.0.0", type=str, help="The host to run the Gradio App on.")
parser.add_argument("--share", action="store_true", help="Whether to share this gradio demo.")
parser.add_argument(
"--enable-optimization",
action="store_true",
help="Whether to enable optimization such as flash attention and fused layernorm",
)
return parser.parse_args()
# ============================
# Main Gradio Script
# ============================
# as `run_inference` needs to be wrapped by `spaces.GPU` and the input can only be the prompt text
# so we can't pass the models to `run_inference` as arguments.
# instead, we need to define them globally so that we can access these models inside `run_inference`
# read config
args = parse_args()
config = read_config(CONFIG_MAP[args.model_type])
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
# make outputs dir
os.makedirs(args.output, exist_ok=True)
# disable torch jit as it can cause failure in gradio SDK
# gradio sdk uses torch with cuda 11.3
torch.jit._state.disable()
# set up
install_dependencies(enable_optimization=args.enable_optimization)
# import after installation
from opensora.datasets import IMG_FPS, save_sample
from opensora.datasets.aspect import get_image_size, get_num_frames
from opensora.models.text_encoder.t5 import text_preprocessing
from opensora.utils.inference_utils import (
add_watermark,
append_generated,
append_score_to_prompts,
apply_mask_strategy,
collect_references_batch,
dframe_to_frame,
extract_json_from_prompts,
extract_prompts_loop,
get_random_prompt_by_openai,
has_openai_key,
merge_prompt,
prepare_multi_resolution_info,
refine_prompts_by_openai,
split_prompt,
)
from opensora.utils.misc import to_torch_dtype
# some global variables
dtype = to_torch_dtype(config.dtype)
device = torch.device("cuda")
# build model
vae, text_encoder, stdit, scheduler = build_models(
args.model_type, config, enable_optimization=args.enable_optimization
)
def run_inference(
mode,
prompt_text,
resolution,
aspect_ratio,
length,
motion_strength,
aesthetic_score,
use_motion_strength,
use_aesthetic_score,
camera_motion,
reference_image,
refine_prompt,
fps,
num_loop,
seed,
sampling_steps,
cfg_scale,
):
if prompt_text is None or prompt_text == "":
gr.Warning("Your prompt is empty, please enter a valid prompt")
return None
torch.manual_seed(seed)
with torch.inference_mode():
# ======================
# 1. Preparation arguments
# ======================
# parse the inputs
# frame_interval must be 1 so we ignore it here
image_size = get_image_size(resolution, aspect_ratio)
# compute generation parameters
if mode == "Text2Image":
num_frames = 1
fps = IMG_FPS
else:
num_frames = config.num_frames
num_frames = get_num_frames(length)
condition_frame_length = int(num_frames / 17 * 5 / 3)
condition_frame_edit = 0.0
input_size = (num_frames, *image_size)
latent_size = vae.get_latent_size(input_size)
multi_resolution = "OpenSora"
align = 5
# == prepare mask strategy ==
if mode == "Text2Image":
mask_strategy = [None]
elif mode == "Text2Video":
if reference_image is not None:
mask_strategy = ["0"]
else:
mask_strategy = [None]
else:
raise ValueError(f"Invalid mode: {mode}")
# == prepare reference ==
if mode == "Text2Image":
refs = [""]
elif mode == "Text2Video":
if reference_image is not None:
# save image to disk
from PIL import Image
im = Image.fromarray(reference_image)
temp_file = NamedTemporaryFile(suffix=".png")
im.save(temp_file.name)
refs = [temp_file.name]
else:
refs = [""]
else:
raise ValueError(f"Invalid mode: {mode}")
# == get json from prompts ==
batch_prompts = [prompt_text]
batch_prompts, refs, mask_strategy = extract_json_from_prompts(batch_prompts, refs, mask_strategy)
# == get reference for condition ==
refs = collect_references_batch(refs, vae, image_size)
# == multi-resolution info ==
model_args = prepare_multi_resolution_info(
multi_resolution, len(batch_prompts), image_size, num_frames, fps, device, dtype
)
# == process prompts step by step ==
# 0. split prompt
# each element in the list is [prompt_segment_list, loop_idx_list]
batched_prompt_segment_list = []
batched_loop_idx_list = []
for prompt in batch_prompts:
prompt_segment_list, loop_idx_list = split_prompt(prompt)
batched_prompt_segment_list.append(prompt_segment_list)
batched_loop_idx_list.append(loop_idx_list)
# 1. refine prompt by openai
if refine_prompt:
# check if openai key is provided
if not has_openai_key():
gr.Warning("OpenAI API key is not provided, the prompt will not be enhanced.")
else:
for idx, prompt_segment_list in enumerate(batched_prompt_segment_list):
batched_prompt_segment_list[idx] = refine_prompts_by_openai(prompt_segment_list)
# process scores
aesthetic_score = aesthetic_score if use_aesthetic_score else None
motion_strength = motion_strength if use_motion_strength and mode != "Text2Image" else None
camera_motion = None if camera_motion == "none" or mode == "Text2Image" else camera_motion
# 2. append score
for idx, prompt_segment_list in enumerate(batched_prompt_segment_list):
batched_prompt_segment_list[idx] = append_score_to_prompts(
prompt_segment_list,
aes=aesthetic_score,
flow=motion_strength,
camera_motion=camera_motion,
)
# 3. clean prompt with T5
for idx, prompt_segment_list in enumerate(batched_prompt_segment_list):
batched_prompt_segment_list[idx] = [text_preprocessing(prompt) for prompt in prompt_segment_list]
# 4. merge to obtain the final prompt
batch_prompts = []
for prompt_segment_list, loop_idx_list in zip(batched_prompt_segment_list, batched_loop_idx_list):
batch_prompts.append(merge_prompt(prompt_segment_list, loop_idx_list))
# =========================
# Generate image/video
# =========================
video_clips = []
for loop_i in range(num_loop):
# 4.4 sample in hidden space
batch_prompts_loop = extract_prompts_loop(batch_prompts, loop_i)
# == loop ==
if loop_i > 0:
refs, mask_strategy = append_generated(
vae, video_clips[-1], refs, mask_strategy, loop_i, condition_frame_length, condition_frame_edit
)
# == sampling ==
z = torch.randn(len(batch_prompts), vae.out_channels, *latent_size, device=device, dtype=dtype)
masks = apply_mask_strategy(z, refs, mask_strategy, loop_i, align=align)
# 4.6. diffusion sampling
# hack to update num_sampling_steps and cfg_scale
scheduler_kwargs = config.scheduler.copy()
scheduler_kwargs.pop("type")
scheduler_kwargs["num_sampling_steps"] = sampling_steps
scheduler_kwargs["cfg_scale"] = cfg_scale
scheduler.__init__(**scheduler_kwargs)
samples = scheduler.sample(
stdit,
text_encoder,
z=z,
prompts=batch_prompts_loop,
device=device,
additional_args=model_args,
progress=True,
mask=masks,
)
samples = vae.decode(samples.to(dtype), num_frames=num_frames)
video_clips.append(samples)
# =========================
# Save output
# =========================
video_clips = [val[0] for val in video_clips]
for i in range(1, num_loop):
video_clips[i] = video_clips[i][:, dframe_to_frame(condition_frame_length) :]
video = torch.cat(video_clips, dim=1)
current_datetime = datetime.datetime.now()
timestamp = current_datetime.timestamp()
save_path = os.path.join(args.output, f"output_{timestamp}")
saved_path = save_sample(video, save_path=save_path, fps=24)
torch.cuda.empty_cache()
# add watermark
# all watermarked videos should have a _watermarked suffix
if mode != "Text2Image" and os.path.exists(WATERMARK_PATH):
watermarked_path = saved_path.replace(".mp4", "_watermarked.mp4")
success = add_watermark(saved_path, WATERMARK_PATH, watermarked_path)
if success:
return watermarked_path
else:
return saved_path
else:
return saved_path
@spaces.GPU(duration=200)
def run_image_inference(
prompt_text,
resolution,
aspect_ratio,
length,
motion_strength,
aesthetic_score,
use_motion_strength,
use_aesthetic_score,
camera_motion,
reference_image,
refine_prompt,
fps,
num_loop,
seed,
sampling_steps,
cfg_scale,
):
return run_inference(
"Text2Image",
prompt_text,
resolution,
aspect_ratio,
length,
motion_strength,
aesthetic_score,
use_motion_strength,
use_aesthetic_score,
camera_motion,
reference_image,
refine_prompt,
fps,
num_loop,
seed,
sampling_steps,
cfg_scale,
)
@spaces.GPU(duration=200)
def run_video_inference(
prompt_text,
resolution,
aspect_ratio,
length,
motion_strength,
aesthetic_score,
use_motion_strength,
use_aesthetic_score,
camera_motion,
reference_image,
refine_prompt,
fps,
num_loop,
seed,
sampling_steps,
cfg_scale,
):
# if (resolution == "480p" and length == "16s") or \
# (resolution == "720p" and length in ["8s", "16s"]):
# gr.Warning("Generation is interrupted as the combination of 480p and 16s will lead to CUDA out of memory")
# else:
return run_inference(
"Text2Video",
prompt_text,
resolution,
aspect_ratio,
length,
motion_strength,
aesthetic_score,
use_motion_strength,
use_aesthetic_score,
camera_motion,
reference_image,
refine_prompt,
fps,
num_loop,
seed,
sampling_steps,
cfg_scale,
)
def generate_random_prompt():
if "OPENAI_API_KEY" not in os.environ:
gr.Warning("Your prompt is empty and the OpenAI API key is not provided, please enter a valid prompt")
return None
else:
prompt_text = get_random_prompt_by_openai()
return prompt_text
def main():
# create demo
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
gr.HTML(
"""
<div style='text-align: center;'>
<p align="center">
<img src="https://github.com/hpcaitech/Open-Sora/raw/main/assets/readme/icon.png" width="250"/>
</p>
<div style="display: flex; gap: 10px; justify-content: center;">
<a href="https://github.com/hpcaitech/Open-Sora/stargazers"><img src="https://img.shields.io/github/stars/hpcaitech/Open-Sora?style=social"></a>
<a href="https://hpcaitech.github.io/Open-Sora/"><img src="https://img.shields.io/badge/Gallery-View-orange?logo=&"></a>
<a href="https://discord.gg/kZakZzrSUT"><img src="https://img.shields.io/badge/Discord-join-blueviolet?logo=discord&"></a>
<a href="https://join.slack.com/t/colossalaiworkspace/shared_invite/zt-247ipg9fk-KRRYmUl~u2ll2637WRURVA"><img src="https://img.shields.io/badge/Slack-ColossalAI-blueviolet?logo=slack&"></a>
<a href="https://twitter.com/yangyou1991/status/1769411544083996787?s=61&t=jT0Dsx2d-MS5vS9rNM5e5g"><img src="https://img.shields.io/badge/Twitter-Discuss-blue?logo=twitter&"></a>
<a href="https://raw.githubusercontent.com/hpcaitech/public_assets/main/colossalai/img/WeChat.png"><img src="https://img.shields.io/badge/微信-小助手加群-green?logo=wechat&"></a>
<a href="https://hpc-ai.com/blog/open-sora-v1.0"><img src="https://img.shields.io/badge/Open_Sora-Blog-blue"></a>
</div>
<h1 style='margin-top: 5px;'>Open-Sora: Democratizing Efficient Video Production for All</h1>
</div>
"""
)
with gr.Row():
with gr.Column():
prompt_text = gr.Textbox(label="Prompt", placeholder="Describe your video here", lines=4)
refine_prompt = gr.Checkbox(value=True, label="Refine prompt with GPT4o")
random_prompt_btn = gr.Button("Random Prompt By GPT4o")
gr.Markdown("## Basic Settings")
resolution = gr.Radio(
choices=["144p", "240p", "360p", "480p", "720p"],
value="480p",
label="Resolution",
)
aspect_ratio = gr.Radio(
choices=["9:16", "16:9", "3:4", "4:3", "1:1"],
value="9:16",
label="Aspect Ratio (H:W)",
)
length = gr.Radio(
choices=["2s", "4s", "8s", "16s"],
value="2s",
label="Video Length",
info="only effective for video generation, 8s may fail as Hugging Face ZeroGPU has the limitation of max 200 seconds inference time.",
)
with gr.Row():
seed = gr.Slider(value=1024, minimum=1, maximum=2048, step=1, label="Seed")
sampling_steps = gr.Slider(value=30, minimum=1, maximum=200, step=1, label="Sampling steps")
cfg_scale = gr.Slider(value=7.0, minimum=0.0, maximum=10.0, step=0.1, label="CFG Scale")
with gr.Row():
with gr.Column():
motion_strength = gr.Slider(
value=5,
minimum=0,
maximum=100,
step=1,
label="Motion Strength",
info="only effective for video generation",
)
use_motion_strength = gr.Checkbox(value=False, label="Enable")
with gr.Column():
aesthetic_score = gr.Slider(
value=6.5,
minimum=4,
maximum=7,
step=0.1,
label="Aesthetic",
info="effective for text & video generation",
)
use_aesthetic_score = gr.Checkbox(value=True, label="Enable")
camera_motion = gr.Radio(
value="none",
label="Camera Motion",
choices=["none", "pan right", "pan left", "tilt up", "tilt down", "zoom in", "zoom out", "static"],
interactive=True,
)
gr.Markdown("## Advanced Settings")
with gr.Row():
fps = gr.Slider(
value=24,
minimum=1,
maximum=60,
step=1,
label="FPS",
info="This is the frames per seconds for video generation, keep it to 24 if you are not sure",
)
num_loop = gr.Slider(
value=1,
minimum=1,
maximum=20,
step=1,
label="Number of Loops",
info="This will change the length of the generated video, keep it to 1 if you are not sure",
)
gr.Markdown("## Reference Image")
reference_image = gr.Image(label="Image (optional)", show_download_button=True)
with gr.Column():
output_video = gr.Video(label="Output Video", height="100%")
with gr.Row():
image_gen_button = gr.Button("Generate image")
video_gen_button = gr.Button("Generate video")
image_gen_button.click(
fn=run_image_inference,
inputs=[
prompt_text,
resolution,
aspect_ratio,
length,
motion_strength,
aesthetic_score,
use_motion_strength,
use_aesthetic_score,
camera_motion,
reference_image,
refine_prompt,
fps,
num_loop,
seed,
sampling_steps,
cfg_scale,
],
outputs=reference_image,
)
video_gen_button.click(
fn=run_video_inference,
inputs=[
prompt_text,
resolution,
aspect_ratio,
length,
motion_strength,
aesthetic_score,
use_motion_strength,
use_aesthetic_score,
camera_motion,
reference_image,
refine_prompt,
fps,
num_loop,
seed,
sampling_steps,
cfg_scale,
],
outputs=output_video,
)
random_prompt_btn.click(fn=generate_random_prompt, outputs=prompt_text)
# launch
demo.launch(server_port=args.port, server_name=args.host, share=args.share)
if __name__ == "__main__":
main()
|