frankleeeee
commited on
Commit
•
e6d2ce0
1
Parent(s):
6099edb
update
Browse files- configs/dit/train/16x256x256.py +1 -1
- configs/dit/train/1x256x256.py +1 -1
- configs/latte/train/16x256x256.py +1 -1
- configs/opensora-v1-1/inference/sample-ref.py +19 -17
- configs/opensora-v1-1/inference/sample.py +3 -2
- configs/opensora-v1-1/train/benchmark.py +2 -1
- configs/opensora-v1-1/train/image.py +2 -1
- configs/opensora-v1-1/train/image_rflow.py +88 -0
- configs/opensora-v1-1/train/stage1.py +11 -10
- configs/opensora-v1-1/train/stage2.py +11 -10
- configs/opensora-v1-1/train/stage3.py +11 -10
- configs/opensora-v1-1/train/video.py +2 -1
- configs/opensora-v1-2/inference/sample.py +42 -0
- configs/opensora-v1-2/misc/bs.py +117 -0
- configs/opensora-v1-2/misc/eval_loss.py +49 -0
- configs/opensora-v1-2/misc/extract.py +62 -0
- configs/opensora-v1-2/misc/feat.py +94 -0
- configs/opensora-v1-2/train/adapt.py +84 -0
- configs/opensora-v1-2/train/stage1.py +111 -0
- configs/opensora-v1-2/train/stage1_feat.py +59 -0
- configs/opensora-v1-2/train/stage2.py +90 -0
- configs/opensora-v1-2/train/stage3.py +92 -0
- configs/opensora/inference/16x256x256.py +1 -1
- configs/opensora/inference/16x512x512-rflow.py +35 -0
- configs/opensora/inference/16x512x512.py +1 -1
- configs/opensora/inference/64x512x512.py +1 -1
- configs/opensora/train/16x256x256-mask.py +3 -3
- configs/opensora/train/16x256x256-spee-rflow.py +64 -0
- configs/opensora/train/16x256x256-spee.py +3 -3
- configs/opensora/train/16x256x256.py +2 -2
- configs/opensora/train/16x512x512.py +1 -1
- configs/opensora/train/360x512x512.py +1 -1
- configs/opensora/train/64x512x512-sp.py +1 -1
- configs/opensora/train/64x512x512.py +1 -1
- configs/pixart/inference/1x20481B.py +36 -0
- configs/pixart/inference/1x2048MS.py +36 -0
- configs/pixart/inference/1x512x512-rflow.py +39 -0
- configs/pixart/train/16x256x256.py +1 -1
- configs/pixart/train/1x2048x2048.py +54 -0
- configs/pixart/train/1x512x512-rflow.py +55 -0
- configs/pixart/train/1x512x512.py +1 -1
- configs/pixart/train/64x512x512.py +1 -1
- configs/vae/inference/image.py +32 -0
- configs/vae/inference/video.py +32 -0
- configs/vae/train/stage1.py +59 -0
- configs/vae/train/stage2.py +59 -0
- configs/vae/train/stage3.py +58 -0
configs/dit/train/16x256x256.py
CHANGED
@@ -18,7 +18,7 @@ sp_size = 1
|
|
18 |
model = dict(
|
19 |
type="DiT-XL/2",
|
20 |
from_pretrained="DiT-XL-2-256x256.pt",
|
21 |
-
|
22 |
enable_layernorm_kernel=True,
|
23 |
)
|
24 |
vae = dict(
|
|
|
18 |
model = dict(
|
19 |
type="DiT-XL/2",
|
20 |
from_pretrained="DiT-XL-2-256x256.pt",
|
21 |
+
enable_flash_attn=True,
|
22 |
enable_layernorm_kernel=True,
|
23 |
)
|
24 |
vae = dict(
|
configs/dit/train/1x256x256.py
CHANGED
@@ -19,7 +19,7 @@ sp_size = 1
|
|
19 |
model = dict(
|
20 |
type="DiT-XL/2",
|
21 |
no_temporal_pos_emb=True,
|
22 |
-
|
23 |
enable_layernorm_kernel=True,
|
24 |
)
|
25 |
vae = dict(
|
|
|
19 |
model = dict(
|
20 |
type="DiT-XL/2",
|
21 |
no_temporal_pos_emb=True,
|
22 |
+
enable_flash_attn=True,
|
23 |
enable_layernorm_kernel=True,
|
24 |
)
|
25 |
vae = dict(
|
configs/latte/train/16x256x256.py
CHANGED
@@ -17,7 +17,7 @@ sp_size = 1
|
|
17 |
# Define model
|
18 |
model = dict(
|
19 |
type="Latte-XL/2",
|
20 |
-
|
21 |
enable_layernorm_kernel=True,
|
22 |
)
|
23 |
vae = dict(
|
|
|
17 |
# Define model
|
18 |
model = dict(
|
19 |
type="Latte-XL/2",
|
20 |
+
enable_flash_attn=True,
|
21 |
enable_layernorm_kernel=True,
|
22 |
)
|
23 |
vae = dict(
|
configs/opensora-v1-1/inference/sample-ref.py
CHANGED
@@ -7,33 +7,35 @@ multi_resolution = "STDiT2"
|
|
7 |
# Condition
|
8 |
prompt_path = None
|
9 |
prompt = [
|
10 |
-
|
11 |
-
'
|
12 |
-
|
|
|
|
|
|
|
13 |
]
|
14 |
|
15 |
loop = 2
|
16 |
condition_frame_length = 4
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
]
|
22 |
-
#
|
23 |
-
#
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
"0",
|
28 |
-
]
|
29 |
|
30 |
# Define model
|
31 |
model = dict(
|
32 |
type="STDiT2-XL/2",
|
33 |
-
from_pretrained=
|
34 |
input_sq_size=512,
|
35 |
qk_norm=True,
|
36 |
-
|
|
|
37 |
enable_layernorm_kernel=True,
|
38 |
)
|
39 |
vae = dict(
|
|
|
7 |
# Condition
|
8 |
prompt_path = None
|
9 |
prompt = [
|
10 |
+
'Drone view of waves crashing against the rugged cliffs along Big Sur\'s garay point beach. {"reference_path": "assets/images/condition/cliff.png", "mask_strategy": "0"}',
|
11 |
+
'A breathtaking sunrise scene.{"reference_path": "assets/images/condition/sunset1.png","mask_strategy": "0"}',
|
12 |
+
'A car driving on the ocean.{"reference_path": "https://cdn.openai.com/tmp/s/interp/d0.mp4","mask_strategy": "0,0,-8,0,8"}',
|
13 |
+
'A snowy forest.{"reference_path": "https://cdn.pixabay.com/video/2021/04/25/72171-542991404_large.mp4","mask_strategy": "0,0,0,0,15,0.8"}',
|
14 |
+
'A breathtaking sunrise scene.{"reference_path": "assets/images/condition/sunset1.png;assets/images/condition/sunset2.png","mask_strategy": "0;0,1,0,-1,1"}',
|
15 |
+
'|0|a white jeep equipped with a roof rack driving on a dirt road in a coniferous forest.|2|a white jeep equipped with a roof rack driving on a dirt road in the desert.|4|a white jeep equipped with a roof rack driving on a dirt road in a mountain.|6|A white jeep equipped with a roof rack driving on a dirt road in a city.|8|a white jeep equipped with a roof rack driving on a dirt road on the surface of a river.|10|a white jeep equipped with a roof rack driving on a dirt road under the lake.|12|a white jeep equipped with a roof rack flying into the sky.|14|a white jeep equipped with a roof rack driving in the universe. Earth is the background.{"reference_path": "https://cdn.openai.com/tmp/s/interp/d0.mp4", "mask_strategy": "0,0,0,0,15"}',
|
16 |
]
|
17 |
|
18 |
loop = 2
|
19 |
condition_frame_length = 4
|
20 |
+
# (
|
21 |
+
# loop id, [the loop index of the condition image or video]
|
22 |
+
# reference id, [the index of the condition image or video in the reference_path]
|
23 |
+
# reference start, [the start frame of the condition image or video]
|
24 |
+
# target start, [the location to insert]
|
25 |
+
# length, [the number of frames to insert]
|
26 |
+
# edit_ratio [the edit rate of the condition image or video]
|
27 |
+
# )
|
28 |
+
# See https://github.com/hpcaitech/Open-Sora/blob/main/docs/config.md#advanced-inference-config for more details
|
29 |
+
# See https://github.com/hpcaitech/Open-Sora/blob/main/docs/commands.md#inference-with-open-sora-11 for more examples
|
|
|
|
|
30 |
|
31 |
# Define model
|
32 |
model = dict(
|
33 |
type="STDiT2-XL/2",
|
34 |
+
from_pretrained="hpcai-tech/OpenSora-STDiT-v2-stage3",
|
35 |
input_sq_size=512,
|
36 |
qk_norm=True,
|
37 |
+
qk_norm_legacy=True,
|
38 |
+
enable_flash_attn=True,
|
39 |
enable_layernorm_kernel=True,
|
40 |
)
|
41 |
vae = dict(
|
configs/opensora-v1-1/inference/sample.py
CHANGED
@@ -7,10 +7,11 @@ multi_resolution = "STDiT2"
|
|
7 |
# Define model
|
8 |
model = dict(
|
9 |
type="STDiT2-XL/2",
|
10 |
-
from_pretrained=
|
11 |
input_sq_size=512,
|
12 |
qk_norm=True,
|
13 |
-
|
|
|
14 |
enable_layernorm_kernel=True,
|
15 |
)
|
16 |
vae = dict(
|
|
|
7 |
# Define model
|
8 |
model = dict(
|
9 |
type="STDiT2-XL/2",
|
10 |
+
from_pretrained="hpcai-tech/OpenSora-STDiT-v2-stage3",
|
11 |
input_sq_size=512,
|
12 |
qk_norm=True,
|
13 |
+
qk_norm_legacy=True,
|
14 |
+
enable_flash_attn=True,
|
15 |
enable_layernorm_kernel=True,
|
16 |
)
|
17 |
vae = dict(
|
configs/opensora-v1-1/train/benchmark.py
CHANGED
@@ -65,7 +65,8 @@ model = dict(
|
|
65 |
from_pretrained=None,
|
66 |
input_sq_size=512, # pretrained model is trained on 512x512
|
67 |
qk_norm=True,
|
68 |
-
|
|
|
69 |
enable_layernorm_kernel=True,
|
70 |
)
|
71 |
vae = dict(
|
|
|
65 |
from_pretrained=None,
|
66 |
input_sq_size=512, # pretrained model is trained on 512x512
|
67 |
qk_norm=True,
|
68 |
+
qk_norm_legacy=True,
|
69 |
+
enable_flash_attn=True,
|
70 |
enable_layernorm_kernel=True,
|
71 |
)
|
72 |
vae = dict(
|
configs/opensora-v1-1/train/image.py
CHANGED
@@ -29,7 +29,8 @@ model = dict(
|
|
29 |
from_pretrained=None,
|
30 |
input_sq_size=512, # pretrained model is trained on 512x512
|
31 |
qk_norm=True,
|
32 |
-
|
|
|
33 |
enable_layernorm_kernel=True,
|
34 |
)
|
35 |
vae = dict(
|
|
|
29 |
from_pretrained=None,
|
30 |
input_sq_size=512, # pretrained model is trained on 512x512
|
31 |
qk_norm=True,
|
32 |
+
qk_norm_legacy=True,
|
33 |
+
enable_flash_attn=True,
|
34 |
enable_layernorm_kernel=True,
|
35 |
)
|
36 |
vae = dict(
|
configs/opensora-v1-1/train/image_rflow.py
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Define dataset
|
2 |
+
# dataset = dict(
|
3 |
+
# type="VariableVideoTextDataset",
|
4 |
+
# data_path=None,
|
5 |
+
# num_frames=None,
|
6 |
+
# frame_interval=3,
|
7 |
+
# image_size=(None, None),
|
8 |
+
# transform_name="resize_crop",
|
9 |
+
# )
|
10 |
+
dataset = dict(
|
11 |
+
type="VideoTextDataset",
|
12 |
+
data_path=None,
|
13 |
+
num_frames=1,
|
14 |
+
frame_interval=1,
|
15 |
+
image_size=(256, 256),
|
16 |
+
transform_name="center",
|
17 |
+
)
|
18 |
+
bucket_config = { # 6s/it
|
19 |
+
"256": {1: (1.0, 256)},
|
20 |
+
"512": {1: (1.0, 80)},
|
21 |
+
"480p": {1: (1.0, 52)},
|
22 |
+
"1024": {1: (1.0, 20)},
|
23 |
+
"1080p": {1: (1.0, 8)},
|
24 |
+
}
|
25 |
+
|
26 |
+
# Define acceleration
|
27 |
+
num_workers = 16
|
28 |
+
dtype = "bf16"
|
29 |
+
grad_checkpoint = True
|
30 |
+
plugin = "zero2"
|
31 |
+
sp_size = 1
|
32 |
+
|
33 |
+
# Define model
|
34 |
+
# model = dict(
|
35 |
+
# type="DiT-XL/2",
|
36 |
+
# from_pretrained="/home/zhaowangbo/wangbo/PixArt-alpha/pretrained_models/PixArt-XL-2-512x512.pth",
|
37 |
+
# # input_sq_size=512, # pretrained model is trained on 512x512
|
38 |
+
# enable_flash_attn=True,
|
39 |
+
# enable_layernorm_kernel=True,
|
40 |
+
# )
|
41 |
+
model = dict(
|
42 |
+
type="PixArt-XL/2",
|
43 |
+
space_scale=1.0,
|
44 |
+
time_scale=1.0,
|
45 |
+
no_temporal_pos_emb=True,
|
46 |
+
from_pretrained="PixArt-XL-2-512x512.pth",
|
47 |
+
enable_flash_attn=True,
|
48 |
+
enable_layernorm_kernel=True,
|
49 |
+
)
|
50 |
+
# model = dict(
|
51 |
+
# type="DiT-XL/2",
|
52 |
+
# # space_scale=1.0,
|
53 |
+
# # time_scale=1.0,
|
54 |
+
# no_temporal_pos_emb=True,
|
55 |
+
# # from_pretrained="PixArt-XL-2-512x512.pth",
|
56 |
+
# from_pretrained="/home/zhaowangbo/wangbo/PixArt-alpha/pretrained_models/PixArt-XL-2-512x512.pth",
|
57 |
+
# enable_flash_attn=True,
|
58 |
+
# enable_layernorm_kernel=True,
|
59 |
+
# )
|
60 |
+
vae = dict(
|
61 |
+
type="VideoAutoencoderKL",
|
62 |
+
from_pretrained="stabilityai/sd-vae-ft-ema",
|
63 |
+
micro_batch_size=4,
|
64 |
+
)
|
65 |
+
text_encoder = dict(
|
66 |
+
type="t5",
|
67 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
68 |
+
model_max_length=200,
|
69 |
+
shardformer=True,
|
70 |
+
)
|
71 |
+
scheduler = dict(
|
72 |
+
type="rflow",
|
73 |
+
# timestep_respacing="",
|
74 |
+
)
|
75 |
+
|
76 |
+
# Others
|
77 |
+
seed = 42
|
78 |
+
outputs = "outputs"
|
79 |
+
wandb = False
|
80 |
+
|
81 |
+
epochs = 10
|
82 |
+
log_every = 10
|
83 |
+
ckpt_every = 500
|
84 |
+
load = None
|
85 |
+
|
86 |
+
batch_size = 100 # only for logging
|
87 |
+
lr = 2e-5
|
88 |
+
grad_clip = 1.0
|
configs/opensora-v1-1/train/stage1.py
CHANGED
@@ -16,15 +16,15 @@ bucket_config = { # 1s/it
|
|
16 |
"1024": {1: (0.3, 3)},
|
17 |
}
|
18 |
mask_ratios = {
|
19 |
-
"
|
20 |
-
"
|
21 |
-
"
|
22 |
-
"
|
23 |
-
"
|
24 |
-
"
|
25 |
-
"
|
26 |
-
"
|
27 |
-
"
|
28 |
}
|
29 |
|
30 |
# Define acceleration
|
@@ -41,7 +41,8 @@ model = dict(
|
|
41 |
from_pretrained=None,
|
42 |
input_sq_size=512, # pretrained model is trained on 512x512
|
43 |
qk_norm=True,
|
44 |
-
|
|
|
45 |
enable_layernorm_kernel=True,
|
46 |
)
|
47 |
vae = dict(
|
|
|
16 |
"1024": {1: (0.3, 3)},
|
17 |
}
|
18 |
mask_ratios = {
|
19 |
+
"identity": 0.75,
|
20 |
+
"quarter_random": 0.025,
|
21 |
+
"quarter_head": 0.025,
|
22 |
+
"quarter_tail": 0.025,
|
23 |
+
"quarter_head_tail": 0.05,
|
24 |
+
"image_random": 0.025,
|
25 |
+
"image_head": 0.025,
|
26 |
+
"image_tail": 0.025,
|
27 |
+
"image_head_tail": 0.05,
|
28 |
}
|
29 |
|
30 |
# Define acceleration
|
|
|
41 |
from_pretrained=None,
|
42 |
input_sq_size=512, # pretrained model is trained on 512x512
|
43 |
qk_norm=True,
|
44 |
+
qk_norm_legacy=True,
|
45 |
+
enable_flash_attn=True,
|
46 |
enable_layernorm_kernel=True,
|
47 |
)
|
48 |
vae = dict(
|
configs/opensora-v1-1/train/stage2.py
CHANGED
@@ -18,15 +18,15 @@ bucket_config = { # 7s/it
|
|
18 |
"1080p": {1: (0.4, 8)},
|
19 |
}
|
20 |
mask_ratios = {
|
21 |
-
"
|
22 |
-
"
|
23 |
-
"
|
24 |
-
"
|
25 |
-
"
|
26 |
-
"
|
27 |
-
"
|
28 |
-
"
|
29 |
-
"
|
30 |
}
|
31 |
|
32 |
# Define acceleration
|
@@ -43,7 +43,8 @@ model = dict(
|
|
43 |
from_pretrained=None,
|
44 |
input_sq_size=512, # pretrained model is trained on 512x512
|
45 |
qk_norm=True,
|
46 |
-
|
|
|
47 |
enable_layernorm_kernel=True,
|
48 |
)
|
49 |
vae = dict(
|
|
|
18 |
"1080p": {1: (0.4, 8)},
|
19 |
}
|
20 |
mask_ratios = {
|
21 |
+
"identity": 0.75,
|
22 |
+
"quarter_random": 0.025,
|
23 |
+
"quarter_head": 0.025,
|
24 |
+
"quarter_tail": 0.025,
|
25 |
+
"quarter_head_tail": 0.05,
|
26 |
+
"image_random": 0.025,
|
27 |
+
"image_head": 0.025,
|
28 |
+
"image_tail": 0.025,
|
29 |
+
"image_head_tail": 0.05,
|
30 |
}
|
31 |
|
32 |
# Define acceleration
|
|
|
43 |
from_pretrained=None,
|
44 |
input_sq_size=512, # pretrained model is trained on 512x512
|
45 |
qk_norm=True,
|
46 |
+
qk_norm_legacy=True,
|
47 |
+
enable_flash_attn=True,
|
48 |
enable_layernorm_kernel=True,
|
49 |
)
|
50 |
vae = dict(
|
configs/opensora-v1-1/train/stage3.py
CHANGED
@@ -18,15 +18,15 @@ bucket_config = { # 13s/it
|
|
18 |
"1024": {1: (0.3, 40)},
|
19 |
}
|
20 |
mask_ratios = {
|
21 |
-
"
|
22 |
-
"
|
23 |
-
"
|
24 |
-
"
|
25 |
-
"
|
26 |
-
"
|
27 |
-
"
|
28 |
-
"
|
29 |
-
"
|
30 |
}
|
31 |
|
32 |
# Define acceleration
|
@@ -43,7 +43,8 @@ model = dict(
|
|
43 |
from_pretrained=None,
|
44 |
input_sq_size=512, # pretrained model is trained on 512x512
|
45 |
qk_norm=True,
|
46 |
-
|
|
|
47 |
enable_layernorm_kernel=True,
|
48 |
)
|
49 |
vae = dict(
|
|
|
18 |
"1024": {1: (0.3, 40)},
|
19 |
}
|
20 |
mask_ratios = {
|
21 |
+
"identity": 0.75,
|
22 |
+
"quarter_random": 0.025,
|
23 |
+
"quarter_head": 0.025,
|
24 |
+
"quarter_tail": 0.025,
|
25 |
+
"quarter_head_tail": 0.05,
|
26 |
+
"image_random": 0.025,
|
27 |
+
"image_head": 0.025,
|
28 |
+
"image_tail": 0.025,
|
29 |
+
"image_head_tail": 0.05,
|
30 |
}
|
31 |
|
32 |
# Define acceleration
|
|
|
43 |
from_pretrained=None,
|
44 |
input_sq_size=512, # pretrained model is trained on 512x512
|
45 |
qk_norm=True,
|
46 |
+
qk_norm_legacy=True,
|
47 |
+
enable_flash_attn=True,
|
48 |
enable_layernorm_kernel=True,
|
49 |
)
|
50 |
vae = dict(
|
configs/opensora-v1-1/train/video.py
CHANGED
@@ -31,7 +31,8 @@ model = dict(
|
|
31 |
from_pretrained=None,
|
32 |
input_sq_size=512, # pretrained model is trained on 512x512
|
33 |
qk_norm=True,
|
34 |
-
|
|
|
35 |
enable_layernorm_kernel=True,
|
36 |
)
|
37 |
vae = dict(
|
|
|
31 |
from_pretrained=None,
|
32 |
input_sq_size=512, # pretrained model is trained on 512x512
|
33 |
qk_norm=True,
|
34 |
+
qk_norm_legacy=True,
|
35 |
+
enable_flash_attn=True,
|
36 |
enable_layernorm_kernel=True,
|
37 |
)
|
38 |
vae = dict(
|
configs/opensora-v1-2/inference/sample.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
resolution = "240p"
|
2 |
+
aspect_ratio = "9:16"
|
3 |
+
num_frames = 51
|
4 |
+
fps = 24
|
5 |
+
frame_interval = 1
|
6 |
+
save_fps = 24
|
7 |
+
|
8 |
+
save_dir = "./samples/samples/"
|
9 |
+
seed = 42
|
10 |
+
batch_size = 1
|
11 |
+
multi_resolution = "STDiT2"
|
12 |
+
dtype = "bf16"
|
13 |
+
condition_frame_length = 5
|
14 |
+
align = 5
|
15 |
+
|
16 |
+
model = dict(
|
17 |
+
type="STDiT3-XL/2",
|
18 |
+
from_pretrained="hpcai-tech/OpenSora-STDiT-v3",
|
19 |
+
qk_norm=True,
|
20 |
+
enable_flash_attn=True,
|
21 |
+
enable_layernorm_kernel=True,
|
22 |
+
)
|
23 |
+
vae = dict(
|
24 |
+
type="OpenSoraVAE_V1_2",
|
25 |
+
from_pretrained="hpcai-tech/OpenSora-VAE-v1.2",
|
26 |
+
micro_frame_size=17,
|
27 |
+
micro_batch_size=4,
|
28 |
+
)
|
29 |
+
text_encoder = dict(
|
30 |
+
type="t5",
|
31 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
32 |
+
model_max_length=300,
|
33 |
+
)
|
34 |
+
scheduler = dict(
|
35 |
+
type="rflow",
|
36 |
+
use_timestep_transform=True,
|
37 |
+
num_sampling_steps=30,
|
38 |
+
cfg_scale=7.0,
|
39 |
+
)
|
40 |
+
|
41 |
+
aes = 6.5
|
42 |
+
flow = None
|
configs/opensora-v1-2/misc/bs.py
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Dataset settings
|
2 |
+
dataset = dict(
|
3 |
+
type="VariableVideoTextDataset",
|
4 |
+
transform_name="resize_crop",
|
5 |
+
)
|
6 |
+
|
7 |
+
# == Config 1: Webvid ==
|
8 |
+
# base: (512, 408), 12s/it
|
9 |
+
grad_checkpoint = True
|
10 |
+
base = ("512", "408")
|
11 |
+
base_step_time = 12
|
12 |
+
bucket_config = {
|
13 |
+
"144p": {
|
14 |
+
1: (475, 0),
|
15 |
+
51: (51, 0),
|
16 |
+
102: (27, 0),
|
17 |
+
204: (13, 0),
|
18 |
+
408: (6, 0),
|
19 |
+
},
|
20 |
+
# ---
|
21 |
+
"240p": {
|
22 |
+
1: (297, 200), # 8.25
|
23 |
+
51: (20, 0),
|
24 |
+
102: (10, 0),
|
25 |
+
204: (5, 0),
|
26 |
+
408: (2, 0),
|
27 |
+
},
|
28 |
+
# ---
|
29 |
+
"512": {
|
30 |
+
1: (141, 0),
|
31 |
+
51: (8, 0),
|
32 |
+
102: (4, 0),
|
33 |
+
204: (2, 0),
|
34 |
+
408: (1, 0),
|
35 |
+
},
|
36 |
+
# ---
|
37 |
+
"480p": {
|
38 |
+
1: (89, 0),
|
39 |
+
51: (5, 0),
|
40 |
+
102: (2, 0),
|
41 |
+
204: (1, 0),
|
42 |
+
},
|
43 |
+
# ---
|
44 |
+
"1024": {
|
45 |
+
1: (36, 0),
|
46 |
+
51: (1, 0),
|
47 |
+
},
|
48 |
+
# ---
|
49 |
+
"1080p": {1: (5, 0)},
|
50 |
+
# ---
|
51 |
+
"2048": {1: (5, 0)},
|
52 |
+
}
|
53 |
+
|
54 |
+
# == Config 1 ==
|
55 |
+
# base: (512, 408), 16s/it
|
56 |
+
|
57 |
+
# Acceleration settings
|
58 |
+
num_workers = 8
|
59 |
+
num_bucket_build_workers = 16
|
60 |
+
dtype = "bf16"
|
61 |
+
plugin = "zero2"
|
62 |
+
|
63 |
+
# Model settings
|
64 |
+
model = dict(
|
65 |
+
type="STDiT3-XL/2",
|
66 |
+
from_pretrained=None,
|
67 |
+
qk_norm=True,
|
68 |
+
enable_flash_attn=True,
|
69 |
+
enable_layernorm_kernel=True,
|
70 |
+
)
|
71 |
+
vae = dict(
|
72 |
+
type="OpenSoraVAE_V1_2",
|
73 |
+
from_pretrained="pretrained_models/vae-pipeline",
|
74 |
+
micro_frame_size=17,
|
75 |
+
micro_batch_size=4,
|
76 |
+
)
|
77 |
+
text_encoder = dict(
|
78 |
+
type="t5",
|
79 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
80 |
+
model_max_length=300,
|
81 |
+
shardformer=True,
|
82 |
+
local_files_only=True,
|
83 |
+
)
|
84 |
+
scheduler = dict(
|
85 |
+
type="rflow",
|
86 |
+
use_timestep_transform=True,
|
87 |
+
sample_method="logit-normal",
|
88 |
+
)
|
89 |
+
|
90 |
+
# Mask settings
|
91 |
+
mask_ratios = {
|
92 |
+
"random": 0.2,
|
93 |
+
"intepolate": 0.01,
|
94 |
+
"quarter_random": 0.01,
|
95 |
+
"quarter_head": 0.01,
|
96 |
+
"quarter_tail": 0.01,
|
97 |
+
"quarter_head_tail": 0.01,
|
98 |
+
"image_random": 0.05,
|
99 |
+
"image_head": 0.1,
|
100 |
+
"image_tail": 0.05,
|
101 |
+
"image_head_tail": 0.05,
|
102 |
+
}
|
103 |
+
|
104 |
+
# Log settings
|
105 |
+
seed = 42
|
106 |
+
outputs = "outputs"
|
107 |
+
wandb = False
|
108 |
+
epochs = 1000
|
109 |
+
log_every = 10
|
110 |
+
ckpt_every = 500
|
111 |
+
|
112 |
+
# optimization settings
|
113 |
+
load = None
|
114 |
+
grad_clip = 1.0
|
115 |
+
lr = 2e-4
|
116 |
+
ema_decay = 0.99
|
117 |
+
adam_eps = 1e-15
|
configs/opensora-v1-2/misc/eval_loss.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
num_workers = 8
|
2 |
+
dtype = "bf16"
|
3 |
+
seed = 42
|
4 |
+
num_eval_timesteps = 10
|
5 |
+
|
6 |
+
# Dataset settings
|
7 |
+
dataset = dict(
|
8 |
+
type="VariableVideoTextDataset",
|
9 |
+
transform_name="resize_crop",
|
10 |
+
)
|
11 |
+
|
12 |
+
bucket_config = {
|
13 |
+
"144p": {1: (None, 100), 51: (None, 30), 102: (None, 20), 204: (None, 8), 408: (None, 4)},
|
14 |
+
# ---
|
15 |
+
"240p": {1: (None, 100), 51: (None, 24), 102: (None, 12), 204: (None, 4), 408: (None, 2)},
|
16 |
+
# ---
|
17 |
+
"360p": {1: (None, 60), 51: (None, 12), 102: (None, 6), 204: (None, 2), 408: (None, 1)},
|
18 |
+
# ---
|
19 |
+
"480p": {1: (None, 40), 51: (None, 6), 102: (None, 3), 204: (None, 1)},
|
20 |
+
# ---
|
21 |
+
"720p": {1: (None, 20), 51: (None, 2), 102: (None, 1)},
|
22 |
+
# ---
|
23 |
+
"1080p": {1: (None, 10)},
|
24 |
+
# ---
|
25 |
+
"2048": {1: (None, 5)},
|
26 |
+
}
|
27 |
+
|
28 |
+
# Model settings
|
29 |
+
model = dict(
|
30 |
+
type="STDiT3-XL/2",
|
31 |
+
from_pretrained=None,
|
32 |
+
qk_norm=True,
|
33 |
+
enable_flash_attn=True,
|
34 |
+
enable_layernorm_kernel=True,
|
35 |
+
)
|
36 |
+
vae = dict(
|
37 |
+
type="OpenSoraVAE_V1_2",
|
38 |
+
from_pretrained="pretrained_models/vae-pipeline",
|
39 |
+
micro_frame_size=17,
|
40 |
+
micro_batch_size=4,
|
41 |
+
local_files_only=True,
|
42 |
+
)
|
43 |
+
text_encoder = dict(
|
44 |
+
type="t5",
|
45 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
46 |
+
model_max_length=300,
|
47 |
+
local_files_only=True,
|
48 |
+
)
|
49 |
+
scheduler = dict(type="rflow")
|
configs/opensora-v1-2/misc/extract.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Dataset settings
|
2 |
+
dataset = dict(
|
3 |
+
type="VariableVideoTextDataset",
|
4 |
+
transform_name="resize_crop",
|
5 |
+
)
|
6 |
+
|
7 |
+
# webvid
|
8 |
+
bucket_config = { # 12s/it
|
9 |
+
"144p": {1: (1.0, 475), 51: (1.0, 51), 102: ((1.0, 0.33), 27), 204: ((1.0, 0.1), 13), 408: ((1.0, 0.1), 6)},
|
10 |
+
# ---
|
11 |
+
"256": {1: (0.4, 297), 51: (0.5, 20), 102: ((0.5, 0.33), 10), 204: ((0.5, 0.1), 5), 408: ((0.5, 0.1), 2)},
|
12 |
+
"240p": {1: (0.3, 297), 51: (0.4, 20), 102: ((0.4, 0.33), 10), 204: ((0.4, 0.1), 5), 408: ((0.4, 0.1), 2)},
|
13 |
+
# ---
|
14 |
+
"360p": {1: (0.2, 141), 51: (0.15, 8), 102: ((0.15, 0.33), 4), 204: ((0.15, 0.1), 2), 408: ((0.15, 0.1), 1)},
|
15 |
+
"512": {1: (0.1, 141)},
|
16 |
+
# ---
|
17 |
+
"480p": {1: (0.1, 89)},
|
18 |
+
# ---
|
19 |
+
"720p": {1: (0.05, 36)},
|
20 |
+
"1024": {1: (0.05, 36)},
|
21 |
+
# ---
|
22 |
+
"1080p": {1: (0.1, 5)},
|
23 |
+
# ---
|
24 |
+
"2048": {1: (0.1, 5)},
|
25 |
+
}
|
26 |
+
|
27 |
+
# Acceleration settings
|
28 |
+
num_workers = 8
|
29 |
+
num_bucket_build_workers = 16
|
30 |
+
dtype = "bf16"
|
31 |
+
seed = 42
|
32 |
+
outputs = "outputs"
|
33 |
+
wandb = False
|
34 |
+
|
35 |
+
|
36 |
+
# Model settings
|
37 |
+
model = dict(
|
38 |
+
type="STDiT3-XL/2",
|
39 |
+
from_pretrained="/mnt/nfs-206/zangwei/opensora/outputs/1091-STDiT3-XL-2/epoch0-global_step8500",
|
40 |
+
qk_norm=True,
|
41 |
+
enable_flash_attn=True,
|
42 |
+
enable_layernorm_kernel=True,
|
43 |
+
)
|
44 |
+
vae = dict(
|
45 |
+
type="OpenSoraVAE_V1_2",
|
46 |
+
from_pretrained="pretrained_models/vae-pipeline",
|
47 |
+
micro_frame_size=17,
|
48 |
+
micro_batch_size=32,
|
49 |
+
)
|
50 |
+
text_encoder = dict(
|
51 |
+
type="t5",
|
52 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
53 |
+
model_max_length=300,
|
54 |
+
shardformer=True,
|
55 |
+
local_files_only=True,
|
56 |
+
)
|
57 |
+
|
58 |
+
# feature extraction settings
|
59 |
+
save_text_features = True
|
60 |
+
save_compressed_text_features = True
|
61 |
+
bin_size = 250 # 1GB, 4195 bins
|
62 |
+
log_time = False
|
configs/opensora-v1-2/misc/feat.py
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Dataset settings
|
2 |
+
dataset = dict(
|
3 |
+
type="VariableVideoTextDataset",
|
4 |
+
transform_name="resize_crop",
|
5 |
+
dummy_text_feature=True,
|
6 |
+
)
|
7 |
+
|
8 |
+
# webvid
|
9 |
+
bucket_config = { # 12s/it
|
10 |
+
"144p": {1: (1.0, 475), 51: (1.0, 51), 102: ((1.0, 0.33), 27), 204: ((1.0, 0.1), 13), 408: ((1.0, 0.1), 6)},
|
11 |
+
# ---
|
12 |
+
"256": {1: (0.4, 297), 51: (0.5, 20), 102: ((0.5, 0.33), 10), 204: ((0.5, 0.1), 5), 408: ((0.5, 0.1), 2)},
|
13 |
+
"240p": {1: (0.3, 297), 51: (0.4, 20), 102: ((0.4, 0.33), 10), 204: ((0.4, 0.1), 5), 408: ((0.4, 0.1), 2)},
|
14 |
+
# ---
|
15 |
+
"360p": {1: (0.2, 141), 51: (0.15, 8), 102: ((0.15, 0.33), 4), 204: ((0.15, 0.1), 2), 408: ((0.15, 0.1), 1)},
|
16 |
+
"512": {1: (0.1, 141)},
|
17 |
+
# ---
|
18 |
+
"480p": {1: (0.1, 89)},
|
19 |
+
# ---
|
20 |
+
"720p": {1: (0.05, 36)},
|
21 |
+
"1024": {1: (0.05, 36)},
|
22 |
+
# ---
|
23 |
+
"1080p": {1: (0.1, 5)},
|
24 |
+
# ---
|
25 |
+
"2048": {1: (0.1, 5)},
|
26 |
+
}
|
27 |
+
|
28 |
+
grad_checkpoint = True
|
29 |
+
|
30 |
+
load_text_features = True
|
31 |
+
|
32 |
+
# Acceleration settings
|
33 |
+
num_workers = 0
|
34 |
+
num_bucket_build_workers = 16
|
35 |
+
dtype = "bf16"
|
36 |
+
plugin = "zero2"
|
37 |
+
|
38 |
+
# Model settings
|
39 |
+
model = dict(
|
40 |
+
type="STDiT3-XL/2",
|
41 |
+
from_pretrained=None,
|
42 |
+
qk_norm=True,
|
43 |
+
enable_flash_attn=True,
|
44 |
+
enable_layernorm_kernel=True,
|
45 |
+
freeze_y_embedder=True,
|
46 |
+
skip_y_embedder=True,
|
47 |
+
)
|
48 |
+
vae = dict(
|
49 |
+
type="OpenSoraVAE_V1_2",
|
50 |
+
from_pretrained="pretrained_models/vae-pipeline",
|
51 |
+
micro_frame_size=17,
|
52 |
+
micro_batch_size=4,
|
53 |
+
)
|
54 |
+
text_encoder = dict(
|
55 |
+
type="t5",
|
56 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
57 |
+
model_max_length=300,
|
58 |
+
shardformer=True,
|
59 |
+
local_files_only=True,
|
60 |
+
)
|
61 |
+
scheduler = dict(
|
62 |
+
type="rflow",
|
63 |
+
use_timestep_transform=True,
|
64 |
+
sample_method="logit-normal",
|
65 |
+
)
|
66 |
+
|
67 |
+
# Mask settings
|
68 |
+
mask_ratios = {
|
69 |
+
"random": 0.2,
|
70 |
+
"intepolate": 0.01,
|
71 |
+
"quarter_random": 0.01,
|
72 |
+
"quarter_head": 0.01,
|
73 |
+
"quarter_tail": 0.01,
|
74 |
+
"quarter_head_tail": 0.01,
|
75 |
+
"image_random": 0.05,
|
76 |
+
"image_head": 0.1,
|
77 |
+
"image_tail": 0.05,
|
78 |
+
"image_head_tail": 0.05,
|
79 |
+
}
|
80 |
+
|
81 |
+
# Log settings
|
82 |
+
seed = 42
|
83 |
+
outputs = "outputs"
|
84 |
+
wandb = False
|
85 |
+
epochs = 1000
|
86 |
+
log_every = 10
|
87 |
+
ckpt_every = 1
|
88 |
+
|
89 |
+
# optimization settings
|
90 |
+
load = None
|
91 |
+
grad_clip = 1.0
|
92 |
+
lr = 2e-4
|
93 |
+
ema_decay = 0.99
|
94 |
+
adam_eps = 1e-15
|
configs/opensora-v1-2/train/adapt.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Dataset settings
|
2 |
+
dataset = dict(
|
3 |
+
type="VariableVideoTextDataset",
|
4 |
+
transform_name="resize_crop",
|
5 |
+
)
|
6 |
+
bucket_config = { # 2s/it
|
7 |
+
"144p": {1: (0.5, 48), 34: (1.0, 2), 51: (1.0, 4), 102: (1.0, 2), 204: (1.0, 1)},
|
8 |
+
# ---
|
9 |
+
"256": {1: (0.6, 20), 34: (0.5, 2), 51: (0.5, 1), 68: (0.5, 1), 136: (0.0, None)},
|
10 |
+
"240p": {1: (0.6, 20), 34: (0.5, 2), 51: (0.5, 1), 68: (0.5, 1), 136: (0.0, None)},
|
11 |
+
# ---
|
12 |
+
"360p": {1: (0.5, 8), 34: (0.2, 1), 102: (0.0, None)},
|
13 |
+
"512": {1: (0.5, 8), 34: (0.2, 1), 102: (0.0, None)},
|
14 |
+
# ---
|
15 |
+
"480p": {1: (0.2, 4), 17: (0.3, 1), 68: (0.0, None)},
|
16 |
+
# ---
|
17 |
+
"720p": {1: (0.1, 2)},
|
18 |
+
"1024": {1: (0.1, 2)},
|
19 |
+
# ---
|
20 |
+
"1080p": {1: (0.1, 1)},
|
21 |
+
}
|
22 |
+
grad_checkpoint = False
|
23 |
+
|
24 |
+
# Acceleration settings
|
25 |
+
num_workers = 8
|
26 |
+
num_bucket_build_workers = 16
|
27 |
+
dtype = "bf16"
|
28 |
+
plugin = "zero2"
|
29 |
+
|
30 |
+
# Model settings
|
31 |
+
model = dict(
|
32 |
+
type="STDiT3-XL/2",
|
33 |
+
from_pretrained=None,
|
34 |
+
qk_norm=True,
|
35 |
+
enable_flash_attn=True,
|
36 |
+
enable_layernorm_kernel=True,
|
37 |
+
)
|
38 |
+
vae = dict(
|
39 |
+
type="OpenSoraVAE_V1_2",
|
40 |
+
from_pretrained="pretrained_models/vae-pipeline",
|
41 |
+
micro_frame_size=17,
|
42 |
+
micro_batch_size=4,
|
43 |
+
)
|
44 |
+
text_encoder = dict(
|
45 |
+
type="t5",
|
46 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
47 |
+
model_max_length=300,
|
48 |
+
shardformer=True,
|
49 |
+
local_files_only=True,
|
50 |
+
)
|
51 |
+
scheduler = dict(
|
52 |
+
type="rflow",
|
53 |
+
use_timestep_transform=True,
|
54 |
+
sample_method="logit-normal",
|
55 |
+
)
|
56 |
+
|
57 |
+
# Mask settings
|
58 |
+
mask_ratios = {
|
59 |
+
"random": 0.2,
|
60 |
+
"intepolate": 0.01,
|
61 |
+
"quarter_random": 0.01,
|
62 |
+
"quarter_head": 0.01,
|
63 |
+
"quarter_tail": 0.01,
|
64 |
+
"quarter_head_tail": 0.01,
|
65 |
+
"image_random": 0.05,
|
66 |
+
"image_head": 0.1,
|
67 |
+
"image_tail": 0.05,
|
68 |
+
"image_head_tail": 0.05,
|
69 |
+
}
|
70 |
+
|
71 |
+
# Log settings
|
72 |
+
seed = 42
|
73 |
+
outputs = "outputs"
|
74 |
+
wandb = False
|
75 |
+
epochs = 1000
|
76 |
+
log_every = 10
|
77 |
+
ckpt_every = 500
|
78 |
+
|
79 |
+
# optimization settings
|
80 |
+
load = None
|
81 |
+
grad_clip = 1.0
|
82 |
+
lr = 1e-4
|
83 |
+
ema_decay = 0.99
|
84 |
+
adam_eps = 1e-15
|
configs/opensora-v1-2/train/stage1.py
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Dataset settings
|
2 |
+
dataset = dict(
|
3 |
+
type="VariableVideoTextDataset",
|
4 |
+
transform_name="resize_crop",
|
5 |
+
)
|
6 |
+
|
7 |
+
# backup
|
8 |
+
# bucket_config = { # 20s/it
|
9 |
+
# "144p": {1: (1.0, 100), 51: (1.0, 30), 102: (1.0, 20), 204: (1.0, 8), 408: (1.0, 4)},
|
10 |
+
# # ---
|
11 |
+
# "256": {1: (0.5, 100), 51: (0.3, 24), 102: (0.3, 12), 204: (0.3, 4), 408: (0.3, 2)},
|
12 |
+
# "240p": {1: (0.5, 100), 51: (0.3, 24), 102: (0.3, 12), 204: (0.3, 4), 408: (0.3, 2)},
|
13 |
+
# # ---
|
14 |
+
# "360p": {1: (0.5, 60), 51: (0.3, 12), 102: (0.3, 6), 204: (0.3, 2), 408: (0.3, 1)},
|
15 |
+
# "512": {1: (0.5, 60), 51: (0.3, 12), 102: (0.3, 6), 204: (0.3, 2), 408: (0.3, 1)},
|
16 |
+
# # ---
|
17 |
+
# "480p": {1: (0.5, 40), 51: (0.3, 6), 102: (0.3, 3), 204: (0.3, 1), 408: (0.0, None)},
|
18 |
+
# # ---
|
19 |
+
# "720p": {1: (0.2, 20), 51: (0.3, 2), 102: (0.3, 1), 204: (0.0, None)},
|
20 |
+
# "1024": {1: (0.1, 20), 51: (0.3, 2), 102: (0.3, 1), 204: (0.0, None)},
|
21 |
+
# # ---
|
22 |
+
# "1080p": {1: (0.1, 10)},
|
23 |
+
# # ---
|
24 |
+
# "2048": {1: (0.1, 5)},
|
25 |
+
# }
|
26 |
+
|
27 |
+
# webvid
|
28 |
+
bucket_config = { # 12s/it
|
29 |
+
"144p": {1: (1.0, 475), 51: (1.0, 51), 102: ((1.0, 0.33), 27), 204: ((1.0, 0.1), 13), 408: ((1.0, 0.1), 6)},
|
30 |
+
# ---
|
31 |
+
"256": {1: (0.4, 297), 51: (0.5, 20), 102: ((0.5, 0.33), 10), 204: ((0.5, 0.1), 5), 408: ((0.5, 0.1), 2)},
|
32 |
+
"240p": {1: (0.3, 297), 51: (0.4, 20), 102: ((0.4, 0.33), 10), 204: ((0.4, 0.1), 5), 408: ((0.4, 0.1), 2)},
|
33 |
+
# ---
|
34 |
+
"360p": {1: (0.2, 141), 51: (0.15, 8), 102: ((0.15, 0.33), 4), 204: ((0.15, 0.1), 2), 408: ((0.15, 0.1), 1)},
|
35 |
+
"512": {1: (0.1, 141)},
|
36 |
+
# ---
|
37 |
+
"480p": {1: (0.1, 89)},
|
38 |
+
# ---
|
39 |
+
"720p": {1: (0.05, 36)},
|
40 |
+
"1024": {1: (0.05, 36)},
|
41 |
+
# ---
|
42 |
+
"1080p": {1: (0.1, 5)},
|
43 |
+
# ---
|
44 |
+
"2048": {1: (0.1, 5)},
|
45 |
+
}
|
46 |
+
|
47 |
+
grad_checkpoint = True
|
48 |
+
|
49 |
+
# Acceleration settings
|
50 |
+
num_workers = 8
|
51 |
+
num_bucket_build_workers = 16
|
52 |
+
dtype = "bf16"
|
53 |
+
plugin = "zero2"
|
54 |
+
|
55 |
+
# Model settings
|
56 |
+
model = dict(
|
57 |
+
type="STDiT3-XL/2",
|
58 |
+
from_pretrained=None,
|
59 |
+
qk_norm=True,
|
60 |
+
enable_flash_attn=True,
|
61 |
+
enable_layernorm_kernel=True,
|
62 |
+
freeze_y_embedder=True,
|
63 |
+
)
|
64 |
+
vae = dict(
|
65 |
+
type="OpenSoraVAE_V1_2",
|
66 |
+
from_pretrained="/mnt/jfs/sora_checkpoints/vae-pipeline",
|
67 |
+
micro_frame_size=17,
|
68 |
+
micro_batch_size=4,
|
69 |
+
)
|
70 |
+
text_encoder = dict(
|
71 |
+
type="t5",
|
72 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
73 |
+
model_max_length=300,
|
74 |
+
shardformer=True,
|
75 |
+
local_files_only=True,
|
76 |
+
)
|
77 |
+
scheduler = dict(
|
78 |
+
type="rflow",
|
79 |
+
use_timestep_transform=True,
|
80 |
+
sample_method="logit-normal",
|
81 |
+
)
|
82 |
+
|
83 |
+
# Mask settings
|
84 |
+
mask_ratios = {
|
85 |
+
"random": 0.05,
|
86 |
+
"intepolate": 0.005,
|
87 |
+
"quarter_random": 0.005,
|
88 |
+
"quarter_head": 0.005,
|
89 |
+
"quarter_tail": 0.005,
|
90 |
+
"quarter_head_tail": 0.005,
|
91 |
+
"image_random": 0.025,
|
92 |
+
"image_head": 0.05,
|
93 |
+
"image_tail": 0.025,
|
94 |
+
"image_head_tail": 0.025,
|
95 |
+
}
|
96 |
+
|
97 |
+
# Log settings
|
98 |
+
seed = 42
|
99 |
+
outputs = "outputs"
|
100 |
+
wandb = False
|
101 |
+
epochs = 1000
|
102 |
+
log_every = 10
|
103 |
+
ckpt_every = 200
|
104 |
+
|
105 |
+
# optimization settings
|
106 |
+
load = None
|
107 |
+
grad_clip = 1.0
|
108 |
+
lr = 1e-4
|
109 |
+
ema_decay = 0.99
|
110 |
+
adam_eps = 1e-15
|
111 |
+
warmup_steps = 1000
|
configs/opensora-v1-2/train/stage1_feat.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Dataset settings
|
2 |
+
dataset = dict(type="BatchFeatureDataset")
|
3 |
+
grad_checkpoint = True
|
4 |
+
num_workers = 4
|
5 |
+
|
6 |
+
# Acceleration settings
|
7 |
+
dtype = "bf16"
|
8 |
+
plugin = "zero2"
|
9 |
+
|
10 |
+
# Model settings
|
11 |
+
model = dict(
|
12 |
+
type="STDiT3-XL/2",
|
13 |
+
from_pretrained=None,
|
14 |
+
qk_norm=True,
|
15 |
+
enable_flash_attn=True,
|
16 |
+
enable_layernorm_kernel=True,
|
17 |
+
freeze_y_embedder=True,
|
18 |
+
skip_y_embedder=True,
|
19 |
+
)
|
20 |
+
scheduler = dict(
|
21 |
+
type="rflow",
|
22 |
+
use_timestep_transform=True,
|
23 |
+
sample_method="logit-normal",
|
24 |
+
)
|
25 |
+
|
26 |
+
vae_out_channels = 4
|
27 |
+
model_max_length = 300
|
28 |
+
text_encoder_output_dim = 4096
|
29 |
+
load_video_features = True
|
30 |
+
load_text_features = True
|
31 |
+
|
32 |
+
# Mask settings
|
33 |
+
mask_ratios = {
|
34 |
+
"random": 0.2,
|
35 |
+
"intepolate": 0.01,
|
36 |
+
"quarter_random": 0.01,
|
37 |
+
"quarter_head": 0.01,
|
38 |
+
"quarter_tail": 0.01,
|
39 |
+
"quarter_head_tail": 0.01,
|
40 |
+
"image_random": 0.05,
|
41 |
+
"image_head": 0.1,
|
42 |
+
"image_tail": 0.05,
|
43 |
+
"image_head_tail": 0.05,
|
44 |
+
}
|
45 |
+
|
46 |
+
# Log settings
|
47 |
+
seed = 42
|
48 |
+
outputs = "outputs"
|
49 |
+
wandb = False
|
50 |
+
epochs = 1000
|
51 |
+
log_every = 10
|
52 |
+
ckpt_every = 500
|
53 |
+
|
54 |
+
# optimization settings
|
55 |
+
load = None
|
56 |
+
grad_clip = 1.0
|
57 |
+
lr = 2e-4
|
58 |
+
ema_decay = 0.99
|
59 |
+
adam_eps = 1e-15
|
configs/opensora-v1-2/train/stage2.py
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Dataset settings
|
2 |
+
dataset = dict(
|
3 |
+
type="VariableVideoTextDataset",
|
4 |
+
transform_name="resize_crop",
|
5 |
+
)
|
6 |
+
|
7 |
+
# webvid
|
8 |
+
bucket_config = { # 12s/it
|
9 |
+
"144p": {1: (1.0, 475), 51: (1.0, 51), 102: ((1.0, 0.33), 27), 204: ((1.0, 0.1), 13), 408: ((1.0, 0.1), 6)},
|
10 |
+
# ---
|
11 |
+
"256": {1: (0.4, 297), 51: (0.5, 20), 102: ((0.5, 0.33), 10), 204: ((0.5, 1.0), 5), 408: ((0.5, 1.0), 2)},
|
12 |
+
"240p": {1: (0.3, 297), 51: (0.4, 20), 102: ((0.4, 0.33), 10), 204: ((0.4, 1.0), 5), 408: ((0.4, 1.0), 2)},
|
13 |
+
# ---
|
14 |
+
"360p": {1: (0.5, 141), 51: (0.15, 8), 102: ((0.3, 0.5), 4), 204: ((0.3, 1.0), 2), 408: ((0.5, 0.5), 1)},
|
15 |
+
"512": {1: (0.4, 141), 51: (0.15, 8), 102: ((0.2, 0.4), 4), 204: ((0.2, 1.0), 2), 408: ((0.4, 0.5), 1)},
|
16 |
+
# ---
|
17 |
+
"480p": {1: (0.5, 89), 51: (0.2, 5), 102: (0.2, 2), 204: (0.1, 1)},
|
18 |
+
# ---
|
19 |
+
"720p": {1: (0.1, 36), 51: (0.03, 1)},
|
20 |
+
"1024": {1: (0.1, 36), 51: (0.02, 1)},
|
21 |
+
# ---
|
22 |
+
"1080p": {1: (0.01, 5)},
|
23 |
+
# ---
|
24 |
+
"2048": {1: (0.01, 5)},
|
25 |
+
}
|
26 |
+
|
27 |
+
grad_checkpoint = True
|
28 |
+
|
29 |
+
# Acceleration settings
|
30 |
+
num_workers = 8
|
31 |
+
num_bucket_build_workers = 16
|
32 |
+
dtype = "bf16"
|
33 |
+
plugin = "zero2"
|
34 |
+
|
35 |
+
# Model settings
|
36 |
+
model = dict(
|
37 |
+
type="STDiT3-XL/2",
|
38 |
+
from_pretrained=None,
|
39 |
+
qk_norm=True,
|
40 |
+
enable_flash_attn=True,
|
41 |
+
enable_layernorm_kernel=True,
|
42 |
+
freeze_y_embedder=True,
|
43 |
+
)
|
44 |
+
vae = dict(
|
45 |
+
type="OpenSoraVAE_V1_2",
|
46 |
+
from_pretrained="/mnt/jfs/sora_checkpoints/vae-pipeline",
|
47 |
+
micro_frame_size=17,
|
48 |
+
micro_batch_size=4,
|
49 |
+
)
|
50 |
+
text_encoder = dict(
|
51 |
+
type="t5",
|
52 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
53 |
+
model_max_length=300,
|
54 |
+
shardformer=True,
|
55 |
+
local_files_only=True,
|
56 |
+
)
|
57 |
+
scheduler = dict(
|
58 |
+
type="rflow",
|
59 |
+
use_timestep_transform=True,
|
60 |
+
sample_method="logit-normal",
|
61 |
+
)
|
62 |
+
|
63 |
+
# Mask settings
|
64 |
+
mask_ratios = {
|
65 |
+
"random": 0.05,
|
66 |
+
"intepolate": 0.005,
|
67 |
+
"quarter_random": 0.005,
|
68 |
+
"quarter_head": 0.005,
|
69 |
+
"quarter_tail": 0.005,
|
70 |
+
"quarter_head_tail": 0.005,
|
71 |
+
"image_random": 0.025,
|
72 |
+
"image_head": 0.05,
|
73 |
+
"image_tail": 0.025,
|
74 |
+
"image_head_tail": 0.025,
|
75 |
+
}
|
76 |
+
|
77 |
+
# Log settings
|
78 |
+
seed = 42
|
79 |
+
outputs = "outputs"
|
80 |
+
wandb = False
|
81 |
+
epochs = 1000
|
82 |
+
log_every = 10
|
83 |
+
ckpt_every = 200
|
84 |
+
|
85 |
+
# optimization settings
|
86 |
+
load = None
|
87 |
+
grad_clip = 1.0
|
88 |
+
lr = 1e-4
|
89 |
+
ema_decay = 0.99
|
90 |
+
adam_eps = 1e-15
|
configs/opensora-v1-2/train/stage3.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Dataset settings
|
2 |
+
dataset = dict(
|
3 |
+
type="VariableVideoTextDataset",
|
4 |
+
transform_name="resize_crop",
|
5 |
+
)
|
6 |
+
|
7 |
+
# webvid
|
8 |
+
bucket_config = { # 20s/it
|
9 |
+
"144p": {1: (1.0, 475), 51: (1.0, 51), 102: (1.0, 27), 204: (1.0, 13), 408: (1.0, 6)},
|
10 |
+
# ---
|
11 |
+
"256": {1: (1.0, 297), 51: (0.5, 20), 102: (0.5, 10), 204: (0.5, 5), 408: ((0.5, 0.5), 2)},
|
12 |
+
"240p": {1: (1.0, 297), 51: (0.5, 20), 102: (0.5, 10), 204: (0.5, 5), 408: ((0.5, 0.4), 2)},
|
13 |
+
# ---
|
14 |
+
"360p": {1: (1.0, 141), 51: (0.5, 8), 102: (0.5, 4), 204: (0.5, 2), 408: ((0.5, 0.3), 1)},
|
15 |
+
"512": {1: (1.0, 141), 51: (0.5, 8), 102: (0.5, 4), 204: (0.5, 2), 408: ((0.5, 0.2), 1)},
|
16 |
+
# ---
|
17 |
+
"480p": {1: (1.0, 89), 51: (0.5, 5), 102: (0.5, 3), 204: ((0.5, 0.5), 1), 408: (0.0, None)},
|
18 |
+
# ---
|
19 |
+
"720p": {1: (0.3, 36), 51: (0.2, 2), 102: (0.1, 1), 204: (0.0, None)},
|
20 |
+
"1024": {1: (0.3, 36), 51: (0.1, 2), 102: (0.1, 1), 204: (0.0, None)},
|
21 |
+
# ---
|
22 |
+
"1080p": {1: (0.1, 5)},
|
23 |
+
# ---
|
24 |
+
"2048": {1: (0.05, 5)},
|
25 |
+
}
|
26 |
+
|
27 |
+
grad_checkpoint = True
|
28 |
+
|
29 |
+
# Acceleration settings
|
30 |
+
num_workers = 8
|
31 |
+
num_bucket_build_workers = 16
|
32 |
+
dtype = "bf16"
|
33 |
+
plugin = "zero2"
|
34 |
+
|
35 |
+
# Model settings
|
36 |
+
model = dict(
|
37 |
+
type="STDiT3-XL/2",
|
38 |
+
from_pretrained=None,
|
39 |
+
qk_norm=True,
|
40 |
+
enable_flash_attn=True,
|
41 |
+
enable_layernorm_kernel=True,
|
42 |
+
freeze_y_embedder=True,
|
43 |
+
)
|
44 |
+
vae = dict(
|
45 |
+
type="OpenSoraVAE_V1_2",
|
46 |
+
from_pretrained="/mnt/jfs/sora_checkpoints/vae-pipeline",
|
47 |
+
micro_frame_size=17,
|
48 |
+
micro_batch_size=4,
|
49 |
+
)
|
50 |
+
text_encoder = dict(
|
51 |
+
type="t5",
|
52 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
53 |
+
model_max_length=300,
|
54 |
+
shardformer=True,
|
55 |
+
local_files_only=True,
|
56 |
+
)
|
57 |
+
scheduler = dict(
|
58 |
+
type="rflow",
|
59 |
+
use_timestep_transform=True,
|
60 |
+
sample_method="logit-normal",
|
61 |
+
)
|
62 |
+
|
63 |
+
# Mask settings
|
64 |
+
# 25%
|
65 |
+
mask_ratios = {
|
66 |
+
"random": 0.01,
|
67 |
+
"intepolate": 0.002,
|
68 |
+
"quarter_random": 0.002,
|
69 |
+
"quarter_head": 0.002,
|
70 |
+
"quarter_tail": 0.002,
|
71 |
+
"quarter_head_tail": 0.002,
|
72 |
+
"image_random": 0.0,
|
73 |
+
"image_head": 0.22,
|
74 |
+
"image_tail": 0.005,
|
75 |
+
"image_head_tail": 0.005,
|
76 |
+
}
|
77 |
+
|
78 |
+
# Log settings
|
79 |
+
seed = 42
|
80 |
+
outputs = "outputs"
|
81 |
+
wandb = False
|
82 |
+
epochs = 1000
|
83 |
+
log_every = 10
|
84 |
+
ckpt_every = 200
|
85 |
+
|
86 |
+
# optimization settings
|
87 |
+
load = None
|
88 |
+
grad_clip = 1.0
|
89 |
+
lr = 1e-4
|
90 |
+
ema_decay = 0.99
|
91 |
+
adam_eps = 1e-15
|
92 |
+
warmup_steps = 1000
|
configs/opensora/inference/16x256x256.py
CHANGED
@@ -7,7 +7,7 @@ model = dict(
|
|
7 |
type="STDiT-XL/2",
|
8 |
space_scale=0.5,
|
9 |
time_scale=1.0,
|
10 |
-
|
11 |
enable_layernorm_kernel=True,
|
12 |
from_pretrained="PRETRAINED_MODEL",
|
13 |
)
|
|
|
7 |
type="STDiT-XL/2",
|
8 |
space_scale=0.5,
|
9 |
time_scale=1.0,
|
10 |
+
enable_flash_attn=True,
|
11 |
enable_layernorm_kernel=True,
|
12 |
from_pretrained="PRETRAINED_MODEL",
|
13 |
)
|
configs/opensora/inference/16x512x512-rflow.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
num_frames = 16
|
2 |
+
fps = 24 // 3
|
3 |
+
image_size = (512, 512)
|
4 |
+
|
5 |
+
# Define model
|
6 |
+
model = dict(
|
7 |
+
type="STDiT-XL/2",
|
8 |
+
space_scale=1.0,
|
9 |
+
time_scale=1.0,
|
10 |
+
enable_flash_attn=True,
|
11 |
+
enable_layernorm_kernel=True,
|
12 |
+
from_pretrained="PRETRAINED_MODEL",
|
13 |
+
)
|
14 |
+
vae = dict(
|
15 |
+
type="VideoAutoencoderKL",
|
16 |
+
from_pretrained="stabilityai/sd-vae-ft-ema",
|
17 |
+
micro_batch_size=2,
|
18 |
+
)
|
19 |
+
text_encoder = dict(
|
20 |
+
type="t5",
|
21 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
22 |
+
model_max_length=120,
|
23 |
+
)
|
24 |
+
scheduler = dict(
|
25 |
+
type="rflow",
|
26 |
+
num_sampling_steps=10,
|
27 |
+
cfg_scale=7.0,
|
28 |
+
)
|
29 |
+
dtype = "bf16"
|
30 |
+
|
31 |
+
# Others
|
32 |
+
batch_size = 2
|
33 |
+
seed = 42
|
34 |
+
prompt_path = "./assets/texts/t2v_samples.txt"
|
35 |
+
save_dir = "./outputs/samples/"
|
configs/opensora/inference/16x512x512.py
CHANGED
@@ -7,7 +7,7 @@ model = dict(
|
|
7 |
type="STDiT-XL/2",
|
8 |
space_scale=1.0,
|
9 |
time_scale=1.0,
|
10 |
-
|
11 |
enable_layernorm_kernel=True,
|
12 |
from_pretrained="PRETRAINED_MODEL",
|
13 |
)
|
|
|
7 |
type="STDiT-XL/2",
|
8 |
space_scale=1.0,
|
9 |
time_scale=1.0,
|
10 |
+
enable_flash_attn=True,
|
11 |
enable_layernorm_kernel=True,
|
12 |
from_pretrained="PRETRAINED_MODEL",
|
13 |
)
|
configs/opensora/inference/64x512x512.py
CHANGED
@@ -7,7 +7,7 @@ model = dict(
|
|
7 |
type="STDiT-XL/2",
|
8 |
space_scale=1.0,
|
9 |
time_scale=2 / 3,
|
10 |
-
|
11 |
enable_layernorm_kernel=True,
|
12 |
from_pretrained="PRETRAINED_MODEL",
|
13 |
)
|
|
|
7 |
type="STDiT-XL/2",
|
8 |
space_scale=1.0,
|
9 |
time_scale=2 / 3,
|
10 |
+
enable_flash_attn=True,
|
11 |
enable_layernorm_kernel=True,
|
12 |
from_pretrained="PRETRAINED_MODEL",
|
13 |
)
|
configs/opensora/train/16x256x256-mask.py
CHANGED
@@ -20,12 +20,12 @@ model = dict(
|
|
20 |
space_scale=0.5,
|
21 |
time_scale=1.0,
|
22 |
from_pretrained="PixArt-XL-2-512x512.pth",
|
23 |
-
|
24 |
enable_layernorm_kernel=True,
|
25 |
)
|
26 |
mask_ratios = {
|
27 |
-
"
|
28 |
-
"
|
29 |
"mask_head": 0.05,
|
30 |
"mask_tail": 0.05,
|
31 |
"mask_head_tail": 0.05,
|
|
|
20 |
space_scale=0.5,
|
21 |
time_scale=1.0,
|
22 |
from_pretrained="PixArt-XL-2-512x512.pth",
|
23 |
+
enable_flash_attn=True,
|
24 |
enable_layernorm_kernel=True,
|
25 |
)
|
26 |
mask_ratios = {
|
27 |
+
"identity": 0.7,
|
28 |
+
"random": 0.15,
|
29 |
"mask_head": 0.05,
|
30 |
"mask_tail": 0.05,
|
31 |
"mask_head_tail": 0.05,
|
configs/opensora/train/16x256x256-spee-rflow.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Define dataset
|
2 |
+
dataset = dict(
|
3 |
+
type="VideoTextDataset",
|
4 |
+
data_path=None,
|
5 |
+
num_frames=16,
|
6 |
+
frame_interval=3,
|
7 |
+
image_size=(256, 256),
|
8 |
+
)
|
9 |
+
|
10 |
+
# Define acceleration
|
11 |
+
num_workers = 4
|
12 |
+
dtype = "bf16"
|
13 |
+
grad_checkpoint = True
|
14 |
+
plugin = "zero2"
|
15 |
+
sp_size = 1
|
16 |
+
|
17 |
+
# Define model
|
18 |
+
model = dict(
|
19 |
+
type="STDiT-XL/2",
|
20 |
+
space_scale=0.5,
|
21 |
+
time_scale=1.0,
|
22 |
+
# from_pretrained="PixArt-XL-2-512x512.pth",
|
23 |
+
# from_pretrained = "/home/zhaowangbo/wangbo/PixArt-alpha/pretrained_models/OpenSora-v1-HQ-16x512x512.pth",
|
24 |
+
# from_pretrained = "OpenSora-v1-HQ-16x512x512.pth",
|
25 |
+
from_pretrained="PRETRAINED_MODEL",
|
26 |
+
enable_flash_attn=True,
|
27 |
+
enable_layernorm_kernel=True,
|
28 |
+
)
|
29 |
+
# mask_ratios = [0.5, 0.29, 0.07, 0.07, 0.07]
|
30 |
+
# mask_ratios = {
|
31 |
+
# "identity": 0.9,
|
32 |
+
# "random": 0.06,
|
33 |
+
# "mask_head": 0.01,
|
34 |
+
# "mask_tail": 0.01,
|
35 |
+
# "mask_head_tail": 0.02,
|
36 |
+
# }
|
37 |
+
vae = dict(
|
38 |
+
type="VideoAutoencoderKL",
|
39 |
+
from_pretrained="stabilityai/sd-vae-ft-ema",
|
40 |
+
)
|
41 |
+
text_encoder = dict(
|
42 |
+
type="t5",
|
43 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
44 |
+
model_max_length=120,
|
45 |
+
shardformer=True,
|
46 |
+
)
|
47 |
+
scheduler = dict(
|
48 |
+
type="rflow",
|
49 |
+
# timestep_respacing="",
|
50 |
+
)
|
51 |
+
|
52 |
+
# Others
|
53 |
+
seed = 42
|
54 |
+
outputs = "outputs"
|
55 |
+
wandb = True
|
56 |
+
|
57 |
+
epochs = 1
|
58 |
+
log_every = 10
|
59 |
+
ckpt_every = 1000
|
60 |
+
load = None
|
61 |
+
|
62 |
+
batch_size = 16
|
63 |
+
lr = 2e-5
|
64 |
+
grad_clip = 1.0
|
configs/opensora/train/16x256x256-spee.py
CHANGED
@@ -20,12 +20,12 @@ model = dict(
|
|
20 |
space_scale=0.5,
|
21 |
time_scale=1.0,
|
22 |
from_pretrained="PixArt-XL-2-512x512.pth",
|
23 |
-
|
24 |
enable_layernorm_kernel=True,
|
25 |
)
|
26 |
mask_ratios = {
|
27 |
-
"
|
28 |
-
"
|
29 |
"mask_head": 0.07,
|
30 |
"mask_tail": 0.07,
|
31 |
"mask_head_tail": 0.07,
|
|
|
20 |
space_scale=0.5,
|
21 |
time_scale=1.0,
|
22 |
from_pretrained="PixArt-XL-2-512x512.pth",
|
23 |
+
enable_flash_attn=True,
|
24 |
enable_layernorm_kernel=True,
|
25 |
)
|
26 |
mask_ratios = {
|
27 |
+
"identity": 0.5,
|
28 |
+
"random": 0.29,
|
29 |
"mask_head": 0.07,
|
30 |
"mask_tail": 0.07,
|
31 |
"mask_head_tail": 0.07,
|
configs/opensora/train/16x256x256.py
CHANGED
@@ -8,7 +8,7 @@ dataset = dict(
|
|
8 |
)
|
9 |
|
10 |
# Define acceleration
|
11 |
-
num_workers =
|
12 |
dtype = "bf16"
|
13 |
grad_checkpoint = True
|
14 |
plugin = "zero2"
|
@@ -20,7 +20,7 @@ model = dict(
|
|
20 |
space_scale=0.5,
|
21 |
time_scale=1.0,
|
22 |
from_pretrained="PixArt-XL-2-512x512.pth",
|
23 |
-
|
24 |
enable_layernorm_kernel=True,
|
25 |
)
|
26 |
vae = dict(
|
|
|
8 |
)
|
9 |
|
10 |
# Define acceleration
|
11 |
+
num_workers = 0
|
12 |
dtype = "bf16"
|
13 |
grad_checkpoint = True
|
14 |
plugin = "zero2"
|
|
|
20 |
space_scale=0.5,
|
21 |
time_scale=1.0,
|
22 |
from_pretrained="PixArt-XL-2-512x512.pth",
|
23 |
+
enable_flash_attn=True,
|
24 |
enable_layernorm_kernel=True,
|
25 |
)
|
26 |
vae = dict(
|
configs/opensora/train/16x512x512.py
CHANGED
@@ -20,7 +20,7 @@ model = dict(
|
|
20 |
space_scale=1.0,
|
21 |
time_scale=1.0,
|
22 |
from_pretrained=None,
|
23 |
-
|
24 |
enable_layernorm_kernel=True,
|
25 |
)
|
26 |
vae = dict(
|
|
|
20 |
space_scale=1.0,
|
21 |
time_scale=1.0,
|
22 |
from_pretrained=None,
|
23 |
+
enable_flash_attn=True,
|
24 |
enable_layernorm_kernel=True,
|
25 |
)
|
26 |
vae = dict(
|
configs/opensora/train/360x512x512.py
CHANGED
@@ -26,7 +26,7 @@ model = dict(
|
|
26 |
space_scale=1.0,
|
27 |
time_scale=2 / 3,
|
28 |
from_pretrained=None,
|
29 |
-
|
30 |
enable_layernorm_kernel=True,
|
31 |
enable_sequence_parallelism=True, # enable sq here
|
32 |
)
|
|
|
26 |
space_scale=1.0,
|
27 |
time_scale=2 / 3,
|
28 |
from_pretrained=None,
|
29 |
+
enable_flash_attn=True,
|
30 |
enable_layernorm_kernel=True,
|
31 |
enable_sequence_parallelism=True, # enable sq here
|
32 |
)
|
configs/opensora/train/64x512x512-sp.py
CHANGED
@@ -20,7 +20,7 @@ model = dict(
|
|
20 |
space_scale=1.0,
|
21 |
time_scale=2 / 3,
|
22 |
from_pretrained=None,
|
23 |
-
|
24 |
enable_layernorm_kernel=True,
|
25 |
enable_sequence_parallelism=True, # enable sq here
|
26 |
)
|
|
|
20 |
space_scale=1.0,
|
21 |
time_scale=2 / 3,
|
22 |
from_pretrained=None,
|
23 |
+
enable_flash_attn=True,
|
24 |
enable_layernorm_kernel=True,
|
25 |
enable_sequence_parallelism=True, # enable sq here
|
26 |
)
|
configs/opensora/train/64x512x512.py
CHANGED
@@ -20,7 +20,7 @@ model = dict(
|
|
20 |
space_scale=1.0,
|
21 |
time_scale=2 / 3,
|
22 |
from_pretrained=None,
|
23 |
-
|
24 |
enable_layernorm_kernel=True,
|
25 |
)
|
26 |
vae = dict(
|
|
|
20 |
space_scale=1.0,
|
21 |
time_scale=2 / 3,
|
22 |
from_pretrained=None,
|
23 |
+
enable_flash_attn=True,
|
24 |
enable_layernorm_kernel=True,
|
25 |
)
|
26 |
vae = dict(
|
configs/pixart/inference/1x20481B.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
num_frames = 1
|
2 |
+
fps = 1
|
3 |
+
image_size = (2560, 1536)
|
4 |
+
# image_size = (2048, 2048)
|
5 |
+
|
6 |
+
model = dict(
|
7 |
+
type="PixArt-1B/2",
|
8 |
+
from_pretrained="PixArt-1B-2.pth",
|
9 |
+
space_scale=4,
|
10 |
+
no_temporal_pos_emb=True,
|
11 |
+
enable_flash_attn=True,
|
12 |
+
enable_layernorm_kernel=True,
|
13 |
+
base_size=2048 // 8,
|
14 |
+
)
|
15 |
+
vae = dict(
|
16 |
+
type="VideoAutoencoderKL",
|
17 |
+
from_pretrained="PixArt-alpha/pixart_sigma_sdxlvae_T5_diffusers",
|
18 |
+
subfolder="vae",
|
19 |
+
)
|
20 |
+
text_encoder = dict(
|
21 |
+
type="t5",
|
22 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
23 |
+
model_max_length=300,
|
24 |
+
)
|
25 |
+
scheduler = dict(
|
26 |
+
type="dpm-solver",
|
27 |
+
num_sampling_steps=14,
|
28 |
+
cfg_scale=4.5,
|
29 |
+
)
|
30 |
+
dtype = "bf16"
|
31 |
+
|
32 |
+
# Others
|
33 |
+
batch_size = 1
|
34 |
+
seed = 42
|
35 |
+
prompt_path = "./assets/texts/t2i_sigma.txt"
|
36 |
+
save_dir = "./samples/samples/"
|
configs/pixart/inference/1x2048MS.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
num_frames = 1
|
2 |
+
fps = 1
|
3 |
+
image_size = (2560, 1536)
|
4 |
+
# image_size = (2048, 2048)
|
5 |
+
|
6 |
+
model = dict(
|
7 |
+
type="PixArt-XL/2",
|
8 |
+
from_pretrained="PixArt-Sigma-XL-2-2K-MS.pth",
|
9 |
+
space_scale=4,
|
10 |
+
no_temporal_pos_emb=True,
|
11 |
+
enable_flash_attn=True,
|
12 |
+
enable_layernorm_kernel=True,
|
13 |
+
base_size=2048 // 8,
|
14 |
+
)
|
15 |
+
vae = dict(
|
16 |
+
type="VideoAutoencoderKL",
|
17 |
+
from_pretrained="PixArt-alpha/pixart_sigma_sdxlvae_T5_diffusers",
|
18 |
+
subfolder="vae",
|
19 |
+
)
|
20 |
+
text_encoder = dict(
|
21 |
+
type="t5",
|
22 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
23 |
+
model_max_length=300,
|
24 |
+
)
|
25 |
+
scheduler = dict(
|
26 |
+
type="dpm-solver",
|
27 |
+
num_sampling_steps=14,
|
28 |
+
cfg_scale=4.5,
|
29 |
+
)
|
30 |
+
dtype = "bf16"
|
31 |
+
|
32 |
+
# Others
|
33 |
+
batch_size = 1
|
34 |
+
seed = 42
|
35 |
+
prompt_path = "./assets/texts/t2i_sigma.txt"
|
36 |
+
save_dir = "./samples/samples/"
|
configs/pixart/inference/1x512x512-rflow.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
num_frames = 1
|
2 |
+
fps = 1
|
3 |
+
image_size = (512, 512)
|
4 |
+
|
5 |
+
# Define model
|
6 |
+
model = dict(
|
7 |
+
type="PixArt-XL/2",
|
8 |
+
space_scale=1.0,
|
9 |
+
time_scale=1.0,
|
10 |
+
no_temporal_pos_emb=True,
|
11 |
+
from_pretrained="PRETRAINED_MODEL",
|
12 |
+
)
|
13 |
+
vae = dict(
|
14 |
+
type="VideoAutoencoderKL",
|
15 |
+
from_pretrained="stabilityai/sd-vae-ft-ema",
|
16 |
+
)
|
17 |
+
text_encoder = dict(
|
18 |
+
type="t5",
|
19 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
20 |
+
model_max_length=120,
|
21 |
+
)
|
22 |
+
scheduler = dict(
|
23 |
+
type="rflow",
|
24 |
+
num_sampling_steps=20,
|
25 |
+
cfg_scale=7.0,
|
26 |
+
)
|
27 |
+
dtype = "bf16"
|
28 |
+
|
29 |
+
# prompt_path = "./assets/texts/t2i_samples.txt"
|
30 |
+
prompt = [
|
31 |
+
"Pirate ship trapped in a cosmic maelstrom nebula.",
|
32 |
+
"A small cactus with a happy face in the Sahara desert.",
|
33 |
+
"A small cactus with a sad face in the Sahara desert.",
|
34 |
+
]
|
35 |
+
|
36 |
+
# Others
|
37 |
+
batch_size = 2
|
38 |
+
seed = 42
|
39 |
+
save_dir = "./outputs/samples2/"
|
configs/pixart/train/16x256x256.py
CHANGED
@@ -20,7 +20,7 @@ model = dict(
|
|
20 |
space_scale=0.5,
|
21 |
time_scale=1.0,
|
22 |
from_pretrained="PixArt-XL-2-512x512.pth",
|
23 |
-
|
24 |
enable_layernorm_kernel=True,
|
25 |
)
|
26 |
vae = dict(
|
|
|
20 |
space_scale=0.5,
|
21 |
time_scale=1.0,
|
22 |
from_pretrained="PixArt-XL-2-512x512.pth",
|
23 |
+
enable_flash_attn=True,
|
24 |
enable_layernorm_kernel=True,
|
25 |
)
|
26 |
vae = dict(
|
configs/pixart/train/1x2048x2048.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Define dataset
|
2 |
+
dataset = dict(
|
3 |
+
type="VideoTextDataset",
|
4 |
+
data_path="/home/zhaowangbo/data/csv/image-v1_1_ext_noempty_rcp_clean_info.csv",
|
5 |
+
num_frames=1,
|
6 |
+
frame_interval=3,
|
7 |
+
image_size=(2048, 2048),
|
8 |
+
)
|
9 |
+
|
10 |
+
# Define acceleration
|
11 |
+
num_workers = 4
|
12 |
+
dtype = "bf16"
|
13 |
+
grad_checkpoint = True
|
14 |
+
plugin = "zero2"
|
15 |
+
sp_size = 1
|
16 |
+
|
17 |
+
# Define model
|
18 |
+
model = dict(
|
19 |
+
type="PixArt-1B/2",
|
20 |
+
space_scale=4.0,
|
21 |
+
no_temporal_pos_emb=True,
|
22 |
+
from_pretrained="PixArt-1B-2.pth",
|
23 |
+
enable_flash_attn=True,
|
24 |
+
enable_layernorm_kernel=True,
|
25 |
+
)
|
26 |
+
|
27 |
+
vae = dict(
|
28 |
+
type="VideoAutoencoderKL",
|
29 |
+
from_pretrained="PixArt-alpha/pixart_sigma_sdxlvae_T5_diffusers",
|
30 |
+
subfolder="vae",
|
31 |
+
)
|
32 |
+
text_encoder = dict(
|
33 |
+
type="t5",
|
34 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
35 |
+
model_max_length=300,
|
36 |
+
)
|
37 |
+
scheduler = dict(
|
38 |
+
type="iddpm",
|
39 |
+
timestep_respacing="",
|
40 |
+
)
|
41 |
+
|
42 |
+
# Others
|
43 |
+
seed = 42
|
44 |
+
outputs = "outputs"
|
45 |
+
wandb = False
|
46 |
+
|
47 |
+
epochs = 1000
|
48 |
+
log_every = 10
|
49 |
+
ckpt_every = 1000
|
50 |
+
load = None
|
51 |
+
|
52 |
+
batch_size = 4
|
53 |
+
lr = 2e-5
|
54 |
+
grad_clip = 1.0
|
configs/pixart/train/1x512x512-rflow.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Define dataset
|
2 |
+
dataset = dict(
|
3 |
+
type="VideoTextDataset",
|
4 |
+
data_path=None,
|
5 |
+
num_frames=1,
|
6 |
+
frame_interval=3,
|
7 |
+
image_size=(512, 512),
|
8 |
+
)
|
9 |
+
|
10 |
+
# Define acceleration
|
11 |
+
num_workers = 4
|
12 |
+
dtype = "bf16"
|
13 |
+
grad_checkpoint = True
|
14 |
+
plugin = "zero2"
|
15 |
+
sp_size = 1
|
16 |
+
|
17 |
+
# Define model
|
18 |
+
model = dict(
|
19 |
+
type="PixArt-XL/2",
|
20 |
+
space_scale=1.0,
|
21 |
+
time_scale=1.0,
|
22 |
+
no_temporal_pos_emb=True,
|
23 |
+
# from_pretrained="PixArt-XL-2-512x512.pth",
|
24 |
+
from_pretrained="PRETRAINED_MODEL",
|
25 |
+
enable_flash_attn=True,
|
26 |
+
enable_layernorm_kernel=True,
|
27 |
+
)
|
28 |
+
vae = dict(
|
29 |
+
type="VideoAutoencoderKL",
|
30 |
+
from_pretrained="stabilityai/sd-vae-ft-ema",
|
31 |
+
)
|
32 |
+
text_encoder = dict(
|
33 |
+
type="t5",
|
34 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
35 |
+
model_max_length=120,
|
36 |
+
shardformer=True,
|
37 |
+
)
|
38 |
+
scheduler = dict(
|
39 |
+
type="rflow",
|
40 |
+
# timestep_respacing="",
|
41 |
+
)
|
42 |
+
|
43 |
+
# Others
|
44 |
+
seed = 42
|
45 |
+
outputs = "outputs"
|
46 |
+
wandb = True
|
47 |
+
|
48 |
+
epochs = 2
|
49 |
+
log_every = 10
|
50 |
+
ckpt_every = 1000
|
51 |
+
load = None
|
52 |
+
|
53 |
+
batch_size = 64
|
54 |
+
lr = 2e-5
|
55 |
+
grad_clip = 1.0
|
configs/pixart/train/1x512x512.py
CHANGED
@@ -21,7 +21,7 @@ model = dict(
|
|
21 |
time_scale=1.0,
|
22 |
no_temporal_pos_emb=True,
|
23 |
from_pretrained="PixArt-XL-2-512x512.pth",
|
24 |
-
|
25 |
enable_layernorm_kernel=True,
|
26 |
)
|
27 |
vae = dict(
|
|
|
21 |
time_scale=1.0,
|
22 |
no_temporal_pos_emb=True,
|
23 |
from_pretrained="PixArt-XL-2-512x512.pth",
|
24 |
+
enable_flash_attn=True,
|
25 |
enable_layernorm_kernel=True,
|
26 |
)
|
27 |
vae = dict(
|
configs/pixart/train/64x512x512.py
CHANGED
@@ -21,7 +21,7 @@ model = dict(
|
|
21 |
space_scale=1.0,
|
22 |
time_scale=2 / 3,
|
23 |
from_pretrained=None,
|
24 |
-
|
25 |
enable_layernorm_kernel=True,
|
26 |
)
|
27 |
vae = dict(
|
|
|
21 |
space_scale=1.0,
|
22 |
time_scale=2 / 3,
|
23 |
from_pretrained=None,
|
24 |
+
enable_flash_attn=True,
|
25 |
enable_layernorm_kernel=True,
|
26 |
)
|
27 |
vae = dict(
|
configs/vae/inference/image.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
image_size = (256, 256)
|
2 |
+
num_frames = 1
|
3 |
+
|
4 |
+
dtype = "bf16"
|
5 |
+
batch_size = 1
|
6 |
+
seed = 42
|
7 |
+
save_dir = "samples/vae_video"
|
8 |
+
cal_stats = True
|
9 |
+
log_stats_every = 100
|
10 |
+
|
11 |
+
# Define dataset
|
12 |
+
dataset = dict(
|
13 |
+
type="VideoTextDataset",
|
14 |
+
data_path=None,
|
15 |
+
num_frames=num_frames,
|
16 |
+
image_size=image_size,
|
17 |
+
)
|
18 |
+
num_samples = 100
|
19 |
+
num_workers = 4
|
20 |
+
|
21 |
+
# Define model
|
22 |
+
model = dict(
|
23 |
+
type="OpenSoraVAE_V1_2",
|
24 |
+
from_pretrained="hpcai-tech/OpenSora-VAE-v1.2",
|
25 |
+
micro_frame_size=None,
|
26 |
+
micro_batch_size=4,
|
27 |
+
cal_loss=True,
|
28 |
+
)
|
29 |
+
|
30 |
+
# loss weights
|
31 |
+
perceptual_loss_weight = 0.1 # use vgg is not None and more than 0
|
32 |
+
kl_loss_weight = 1e-6
|
configs/vae/inference/video.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
image_size = (256, 256)
|
2 |
+
num_frames = 17
|
3 |
+
|
4 |
+
dtype = "bf16"
|
5 |
+
batch_size = 1
|
6 |
+
seed = 42
|
7 |
+
save_dir = "samples/vae_video"
|
8 |
+
cal_stats = True
|
9 |
+
log_stats_every = 100
|
10 |
+
|
11 |
+
# Define dataset
|
12 |
+
dataset = dict(
|
13 |
+
type="VideoTextDataset",
|
14 |
+
data_path=None,
|
15 |
+
num_frames=num_frames,
|
16 |
+
image_size=image_size,
|
17 |
+
)
|
18 |
+
num_samples = 100
|
19 |
+
num_workers = 4
|
20 |
+
|
21 |
+
# Define model
|
22 |
+
model = dict(
|
23 |
+
type="OpenSoraVAE_V1_2",
|
24 |
+
from_pretrained="hpcai-tech/OpenSora-VAE-v1.2",
|
25 |
+
micro_frame_size=None,
|
26 |
+
micro_batch_size=4,
|
27 |
+
cal_loss=True,
|
28 |
+
)
|
29 |
+
|
30 |
+
# loss weights
|
31 |
+
perceptual_loss_weight = 0.1 # use vgg is not None and more than 0
|
32 |
+
kl_loss_weight = 1e-6
|
configs/vae/train/stage1.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
num_frames = 17
|
2 |
+
image_size = (256, 256)
|
3 |
+
|
4 |
+
# Define dataset
|
5 |
+
dataset = dict(
|
6 |
+
type="VideoTextDataset",
|
7 |
+
data_path=None,
|
8 |
+
num_frames=num_frames,
|
9 |
+
frame_interval=1,
|
10 |
+
image_size=image_size,
|
11 |
+
)
|
12 |
+
|
13 |
+
# Define acceleration
|
14 |
+
num_workers = 16
|
15 |
+
dtype = "bf16"
|
16 |
+
grad_checkpoint = True
|
17 |
+
plugin = "zero2"
|
18 |
+
|
19 |
+
# Define model
|
20 |
+
model = dict(
|
21 |
+
type="VideoAutoencoderPipeline",
|
22 |
+
freeze_vae_2d=True,
|
23 |
+
from_pretrained=None,
|
24 |
+
cal_loss=True,
|
25 |
+
vae_2d=dict(
|
26 |
+
type="VideoAutoencoderKL",
|
27 |
+
from_pretrained="PixArt-alpha/pixart_sigma_sdxlvae_T5_diffusers",
|
28 |
+
subfolder="vae",
|
29 |
+
local_files_only=True,
|
30 |
+
),
|
31 |
+
vae_temporal=dict(
|
32 |
+
type="VAE_Temporal_SD",
|
33 |
+
from_pretrained=None,
|
34 |
+
),
|
35 |
+
)
|
36 |
+
|
37 |
+
# loss weights
|
38 |
+
perceptual_loss_weight = 0.1 # use vgg is not None and more than 0
|
39 |
+
kl_loss_weight = 1e-6
|
40 |
+
|
41 |
+
mixed_strategy = "mixed_video_image"
|
42 |
+
mixed_image_ratio = 0.2
|
43 |
+
use_real_rec_loss = False
|
44 |
+
use_z_rec_loss = True
|
45 |
+
use_image_identity_loss = True
|
46 |
+
|
47 |
+
# Others
|
48 |
+
seed = 42
|
49 |
+
outputs = "outputs/vae_stage1"
|
50 |
+
wandb = False
|
51 |
+
|
52 |
+
epochs = 100 # NOTE: adjust accordingly w.r.t dataset size
|
53 |
+
log_every = 1
|
54 |
+
ckpt_every = 1000
|
55 |
+
load = None
|
56 |
+
|
57 |
+
batch_size = 1
|
58 |
+
lr = 1e-5
|
59 |
+
grad_clip = 1.0
|
configs/vae/train/stage2.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
num_frames = 17
|
2 |
+
image_size = (256, 256)
|
3 |
+
|
4 |
+
# Define dataset
|
5 |
+
dataset = dict(
|
6 |
+
type="VideoTextDataset",
|
7 |
+
data_path=None,
|
8 |
+
num_frames=num_frames,
|
9 |
+
frame_interval=1,
|
10 |
+
image_size=image_size,
|
11 |
+
)
|
12 |
+
|
13 |
+
# Define acceleration
|
14 |
+
num_workers = 16
|
15 |
+
dtype = "bf16"
|
16 |
+
grad_checkpoint = True
|
17 |
+
plugin = "zero2"
|
18 |
+
|
19 |
+
# Define model
|
20 |
+
model = dict(
|
21 |
+
type="VideoAutoencoderPipeline",
|
22 |
+
freeze_vae_2d=False,
|
23 |
+
from_pretrained="outputs/vae_stage1",
|
24 |
+
cal_loss=True,
|
25 |
+
vae_2d=dict(
|
26 |
+
type="VideoAutoencoderKL",
|
27 |
+
from_pretrained="PixArt-alpha/pixart_sigma_sdxlvae_T5_diffusers",
|
28 |
+
subfolder="vae",
|
29 |
+
local_files_only=True,
|
30 |
+
),
|
31 |
+
vae_temporal=dict(
|
32 |
+
type="VAE_Temporal_SD",
|
33 |
+
from_pretrained=None,
|
34 |
+
),
|
35 |
+
)
|
36 |
+
|
37 |
+
# loss weights
|
38 |
+
perceptual_loss_weight = 0.1 # use vgg is not None and more than 0
|
39 |
+
kl_loss_weight = 1e-6
|
40 |
+
|
41 |
+
mixed_strategy = "mixed_video_image"
|
42 |
+
mixed_image_ratio = 0.2
|
43 |
+
use_real_rec_loss = False
|
44 |
+
use_z_rec_loss = True
|
45 |
+
use_image_identity_loss = False
|
46 |
+
|
47 |
+
# Others
|
48 |
+
seed = 42
|
49 |
+
outputs = "outputs/vae_stage2"
|
50 |
+
wandb = False
|
51 |
+
|
52 |
+
epochs = 100 # NOTE: adjust accordingly w.r.t dataset size
|
53 |
+
log_every = 1
|
54 |
+
ckpt_every = 1000
|
55 |
+
load = None
|
56 |
+
|
57 |
+
batch_size = 1
|
58 |
+
lr = 1e-5
|
59 |
+
grad_clip = 1.0
|
configs/vae/train/stage3.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
num_frames = 33
|
2 |
+
image_size = (256, 256)
|
3 |
+
|
4 |
+
# Define dataset
|
5 |
+
dataset = dict(
|
6 |
+
type="VideoTextDataset",
|
7 |
+
data_path=None,
|
8 |
+
num_frames=num_frames,
|
9 |
+
frame_interval=1,
|
10 |
+
image_size=image_size,
|
11 |
+
)
|
12 |
+
|
13 |
+
# Define acceleration
|
14 |
+
num_workers = 16
|
15 |
+
dtype = "bf16"
|
16 |
+
grad_checkpoint = True
|
17 |
+
plugin = "zero2"
|
18 |
+
|
19 |
+
# Define model
|
20 |
+
model = dict(
|
21 |
+
type="VideoAutoencoderPipeline",
|
22 |
+
freeze_vae_2d=False,
|
23 |
+
from_pretrained="outputs/vae_stage2",
|
24 |
+
cal_loss=True,
|
25 |
+
vae_2d=dict(
|
26 |
+
type="VideoAutoencoderKL",
|
27 |
+
from_pretrained="PixArt-alpha/pixart_sigma_sdxlvae_T5_diffusers",
|
28 |
+
subfolder="vae",
|
29 |
+
local_files_only=True,
|
30 |
+
),
|
31 |
+
vae_temporal=dict(
|
32 |
+
type="VAE_Temporal_SD",
|
33 |
+
from_pretrained=None,
|
34 |
+
),
|
35 |
+
)
|
36 |
+
|
37 |
+
# loss weights
|
38 |
+
perceptual_loss_weight = 0.1 # use vgg is not None and more than 0
|
39 |
+
kl_loss_weight = 1e-6
|
40 |
+
|
41 |
+
mixed_strategy = "mixed_video_random"
|
42 |
+
use_real_rec_loss = True
|
43 |
+
use_z_rec_loss = False
|
44 |
+
use_image_identity_loss = False
|
45 |
+
|
46 |
+
# Others
|
47 |
+
seed = 42
|
48 |
+
outputs = "outputs/vae_stage3"
|
49 |
+
wandb = False
|
50 |
+
|
51 |
+
epochs = 100 # NOTE: adjust accordingly w.r.t dataset size
|
52 |
+
log_every = 1
|
53 |
+
ckpt_every = 1000
|
54 |
+
load = None
|
55 |
+
|
56 |
+
batch_size = 1
|
57 |
+
lr = 1e-5
|
58 |
+
grad_clip = 1.0
|