Spaces:
Sleeping
Sleeping
File size: 6,637 Bytes
b03a8f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
import smplx
import torch
import numpy as np
from . import rotation_conversions as rc
import os
import wget
download_path = "./emage_evaltools/"
smplx_model_dir = os.path.join(download_path, "smplx_models", "smplx")
if not os.path.exists(smplx_model_dir):
smplx_model_file_path = os.path.join(smplx_model_dir, "SMPLX_NEUTRAL_2020.npz")
os.makedirs(smplx_model_dir, exist_ok=True)
if not os.path.exists(smplx_model_file_path):
print(f"Downloading {smplx_model_file_path}")
wget.download(
"https://huggingface.co/spaces/H-Liu1997/EMAGE/resolve/main/EMAGE/smplx_models/smplx/SMPLX_NEUTRAL_2020.npz",
smplx_model_file_path,
)
smplx_model = smplx.create(
"./emage_evaltools/smplx_models/",
model_type='smplx',
gender='NEUTRAL_2020',
use_face_contour=False,
num_betas=300,
num_expression_coeffs=100,
ext='npz',
use_pca=False,
).eval()
def get_motion_rep_tensor(motion_tensor, pose_fps=30, device="cuda", betas=None):
global smplx_model
smplx_model = smplx_model.to(device)
bs, n, _ = motion_tensor.shape
motion_tensor = motion_tensor.float().to(device)
motion_tensor_reshaped = motion_tensor.reshape(bs * n, 165)
betas = torch.zeros(n, 300, device=device) if betas is None else betas.to(device).unsqueeze(0).repeat(n, 1)
output = smplx_model(
betas=torch.zeros(bs * n, 300, device=device),
transl=torch.zeros(bs * n, 3, device=device),
expression=torch.zeros(bs * n, 100, device=device),
jaw_pose=torch.zeros(bs * n, 3, device=device),
global_orient=torch.zeros(bs * n, 3, device=device),
body_pose=motion_tensor_reshaped[:, 3:21 * 3 + 3],
left_hand_pose=motion_tensor_reshaped[:, 25 * 3:40 * 3],
right_hand_pose=motion_tensor_reshaped[:, 40 * 3:55 * 3],
return_joints=True,
leye_pose=torch.zeros(bs * n, 3, device=device),
reye_pose=torch.zeros(bs * n, 3, device=device),
)
joints = output['joints'].reshape(bs, n, 127, 3)[:, :, :55, :]
dt = 1 / pose_fps
init_vel = (joints[:, 1:2] - joints[:, 0:1]) / dt
middle_vel = (joints[:, 2:] - joints[:, :-2]) / (2 * dt)
final_vel = (joints[:, -1:] - joints[:, -2:-1]) / dt
vel = torch.cat([init_vel, middle_vel, final_vel], dim=1)
position = joints
rot_matrices = rc.axis_angle_to_matrix(motion_tensor.reshape(bs, n, 55, 3))
rot6d = rc.matrix_to_rotation_6d(rot_matrices).reshape(bs, n, 55, 6)
init_vel_ang = (motion_tensor[:, 1:2] - motion_tensor[:, 0:1]) / dt
middle_vel_ang = (motion_tensor[:, 2:] - motion_tensor[:, :-2]) / (2 * dt)
final_vel_ang = (motion_tensor[:, -1:] - motion_tensor[:, -2:-1]) / dt
angular_velocity = torch.cat([init_vel_ang, middle_vel_ang, final_vel_ang], dim=1).reshape(bs, n, 55, 3)
rep15d = torch.cat([position, vel, rot6d, angular_velocity], dim=3).reshape(bs, n, 55 * 15)
return {
"position": position,
"velocity": vel,
"rotation": rot6d,
"axis_angle": motion_tensor,
"angular_velocity": angular_velocity,
"rep15d": rep15d,
}
def get_motion_rep_numpy(poses_np, pose_fps=30, device="cuda", expressions=None, expression_only=False, betas=None):
# motion["poses"] is expected to be numpy array of shape (n, 165)
# (n, 55*3), axis-angle for 55 joints
global smplx_model
smplx_model = smplx_model.to(device)
n = poses_np.shape[0]
# Convert numpy to torch tensor for SMPL-X forward pass
poses_ts = torch.from_numpy(poses_np).float().to(device).unsqueeze(0) # (1, n, 165)
poses_ts_reshaped = poses_ts.reshape(-1, 165) # (n, 165)
betas = torch.zeros(n, 300, device=device) if betas is None else torch.from_numpy(betas).to(device).unsqueeze(0).repeat(n, 1)
if expressions is not None and expression_only:
# print("xx")
expressions = torch.from_numpy(expressions).float().to(device)
output = smplx_model(
betas=betas,
transl=torch.zeros(n, 3, device=device),
expression=expressions,
jaw_pose=poses_ts_reshaped[:, 22 * 3:23 * 3],
global_orient=torch.zeros(n, 3, device=device),
body_pose=torch.zeros(n, 21*3, device=device),
left_hand_pose=torch.zeros(n, 15*3, device=device),
right_hand_pose=torch.zeros(n, 15*3, device=device),
return_joints=True,
leye_pose=torch.zeros(n, 3, device=device),
reye_pose=torch.zeros(n, 3, device=device),
)
joints = output["vertices"].detach().cpu().numpy().reshape(n, -1)
return {"vertices": joints}
# Run smplx model to get joints
output = smplx_model(
betas=betas,
transl=torch.zeros(n, 3, device=device),
expression=torch.zeros(n, 100, device=device),
jaw_pose=torch.zeros(n, 3, device=device),
global_orient=torch.zeros(n, 3, device=device),
body_pose=poses_ts_reshaped[:, 3:21 * 3 + 3],
left_hand_pose=poses_ts_reshaped[:, 25 * 3:40 * 3],
right_hand_pose=poses_ts_reshaped[:, 40 * 3:55 * 3],
return_joints=True,
leye_pose=torch.zeros(n, 3, device=device),
reye_pose=torch.zeros(n, 3, device=device),
)
joints = output["joints"].detach().cpu().numpy().reshape(n, 127, 3)[:, :55, :]
dt = 1 / pose_fps
# Compute linear velocity
init_vel = (joints[1:2] - joints[0:1]) / dt
middle_vel = (joints[2:] - joints[:-2]) / (2 * dt)
final_vel = (joints[-1:] - joints[-2:-1]) / dt
vel = np.concatenate([init_vel, middle_vel, final_vel], axis=0)
position = joints
# Compute rotation 6D from axis-angle
poses_ts_reshaped_aa = poses_ts.reshape(1, n, 55, 3)
rot_matrices = rc.axis_angle_to_matrix(poses_ts_reshaped_aa)[0] # (n, 55, 3, 3)
rot6d = rc.matrix_to_rotation_6d(rot_matrices).reshape(n, 55, 6).cpu().numpy()
# Compute angular velocity
init_vel_ang = (poses_np[1:2] - poses_np[0:1]) / dt
middle_vel_ang = (poses_np[2:] - poses_np[:-2]) / (2 * dt)
final_vel_ang = (poses_np[-1:] - poses_np[-2:-1]) / dt
angular_velocity = np.concatenate([init_vel_ang, middle_vel_ang, final_vel_ang], axis=0).reshape(n, 55, 3)
# rep15d: position(55*3), vel(55*3), rot6d(55*6), angular_velocity(55*3) => total 55*(3+3+6+3)=55*15
rep15d = np.concatenate([position, vel, rot6d, angular_velocity], axis=2).reshape(n, 55 * 15)
return {
"position": position,
"velocity": vel,
"rotation": rot6d,
"axis_angle": poses_np,
"angular_velocity": angular_velocity,
"rep15d": rep15d,
}
|