EMAGE / train_emage_audio.py
H-Liu1997's picture
newapp
b03a8f2
import os
import shutil
import argparse
import random
import numpy as np
from datetime import datetime
from tqdm import tqdm
import importlib
import copy
import librosa
from pathlib import Path
import json
import time
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
from torch.nn.parallel import DistributedDataParallel as DDP
import wandb
from diffusers.optimization import get_scheduler
from omegaconf import OmegaConf
from emage_evaltools.mertic import FGD, BC, L1div, LVDFace, MSEFace
from emage_utils.motion_io import beat_format_load, beat_format_save, MASK_DICT, recover_from_mask
import emage_utils.rotation_conversions as rc
from emage_utils import fast_render
from emage_utils.motion_rep_transfer import get_motion_rep_numpy
from models.emage_audio import EmageVQVAEConv, EmageVAEConv, EmageVQModel, EmageAudioModel
# --------------------------------- train,val,test fn here --------------------------------- #
def inference_fn(cfg, model, device, test_path, save_path, **kwargs):
motion_vq = kwargs["motion_vq"]
actual_model = model.module if isinstance(model, torch.nn.parallel.DistributedDataParallel) else model
actual_model.eval()
test_list = []
for data_meta_path in test_path:
test_list.extend(json.load(open(data_meta_path, "r")))
test_list = [item for item in test_list if item.get("mode") == "test"]
seen_ids = set()
test_list = [item for item in test_list if not (item["video_id"] in seen_ids or seen_ids.add(item["video_id"]))]
save_list = []
start_time = time.time()
total_length = 0
for test_file in tqdm(test_list, desc="Testing"):
audio, _ = librosa.load(test_file["audio_path"], sr=cfg.audio_sr)
audio = torch.from_numpy(audio).to(device).unsqueeze(0)
speaker_id = torch.zeros(1,1).to(device).long()
# motion seed
motion_data = np.load(test_file["motion_path"], allow_pickle=True)
poses = torch.from_numpy(motion_data["poses"]).unsqueeze(0).to(device).float()
foot_contact = torch.from_numpy(np.load(test_file["motion_path"].replace("smplxflame_30", "footcontact").replace(".npz", ".npy"))).unsqueeze(0).to(device).float()
trans = torch.from_numpy(motion_data["trans"]).unsqueeze(0).to(device).float()
expression = torch.from_numpy(motion_data["expressions"]).unsqueeze(0).to(device).float()
bs, t, _ = poses.shape
poses_6d = rc.axis_angle_to_rotation_6d(poses.reshape(bs, t, -1, 3)).reshape(bs, t, -1)
masked_motion = torch.cat([poses_6d, trans, foot_contact], dim=-1) # bs t 337
# reconstrcution check
# latent_dict = motion_vq.map2latent(poses_6d, expression, tar_contact=foot_contact, tar_trans=trans)
# face_latent = latent_dict["face"]
# upper_latent = latent_dict["upper"]
# lower_latent = latent_dict["lower"]
# hands_latent = latent_dict["hands"]
# face_index, upper_index, lower_index, hands_index = None, None, None, None
latent_dict = actual_model.inference(audio, speaker_id, motion_vq, masked_motion=masked_motion)
face_latent = latent_dict["rec_face"] if cfg.lf > 0 and cfg.cf == 0 else None
upper_latent = latent_dict["rec_upper"] if cfg.lu > 0 and cfg.cu == 0 else None
hands_latent = latent_dict["rec_hands"] if cfg.lh > 0 and cfg.ch == 0 else None
lower_latent = latent_dict["rec_lower"] if cfg.ll > 0 and cfg.cl == 0 else None
# print(latent_dict["rec_face"].shape,latent_dict["cls_upper"].shape)
face_index = torch.max(F.log_softmax(latent_dict["cls_face"], dim=2), dim=2)[1] if cfg.cf > 0 else None
upper_index = torch.max(F.log_softmax(latent_dict["cls_upper"], dim=2), dim=2)[1] if cfg.cu > 0 else None
hands_index = torch.max(F.log_softmax(latent_dict["cls_hands"], dim=2), dim=2)[1] if cfg.ch > 0 else None
lower_index = torch.max(F.log_softmax(latent_dict["cls_lower"], dim=2), dim=2)[1] if cfg.cl > 0 else None
motion_all = motion_vq.decode(
face_latent=face_latent, upper_latent=upper_latent, lower_latent=lower_latent, hands_latent=hands_latent,
face_index=face_index, upper_index=upper_index, lower_index=lower_index, hands_index=hands_index,
get_global_motion=True, ref_trans=trans[:,0])
motion_pred = motion_all["motion_axis_angle"]
t = motion_pred.shape[1]
motion_pred = motion_pred.cpu().numpy().reshape(t, -1)
expression_pred = motion_all["expression"].cpu().numpy().reshape(t, -1)
trans_pred = motion_all["trans"].cpu().numpy().reshape(t, -1)
# print(motion_pred.shape, expression_pred.shape, trans_pred.shape)
beat_format_save(os.path.join(save_path, f"{test_file['video_id']}_output.npz"), motion_pred, upsample=30//cfg.pose_fps, expressions=expression_pred, trans=trans_pred)
save_list.append(
{
"audio_path": test_file["audio_path"],
"motion_path": os.path.join(save_path, f"{test_file['video_id']}_output.npz"),
"video_id": test_file["video_id"],
}
)
total_length+=t
time_cost = time.time() - start_time
print(f"\n cost {time_cost:.2f} seconds to generate {total_length / cfg.pose_fps:.2f} seconds of motion")
return test_list, save_list
def get_mask(mask, ratio):
pass
def get_rec_loss(motion_pred, motion_gt, lu, ll, lh, lf):
rec_loss_upper = lu * F.mse_loss(motion_pred["rec_upper"], motion_gt["upper"])
rec_loss_lower = ll * F.mse_loss(motion_pred["rec_lower"], motion_gt["lower"])
rec_loss_hands = lh * F.mse_loss(motion_pred["rec_hands"], motion_gt["hands"])
rec_loss_face = lf * F.mse_loss(motion_pred["rec_face"], motion_gt["face"])
return rec_loss_upper+rec_loss_lower+rec_loss_hands+rec_loss_face
def get_cls_loss(motion_pred, motion_gt, cu, cl, ch, cf, ClsFn):
ClsFn = ClsFn.to(motion_pred["cls_upper"].device)
pred_upper = F.log_softmax(motion_pred["cls_upper"], dim=2)
pred_lower = F.log_softmax(motion_pred["cls_lower"], dim=2)
pred_hands = F.log_softmax(motion_pred["cls_hands"], dim=2)
pred_face = F.log_softmax(motion_pred["cls_face"], dim=2)
pred_upper = pred_upper.permute(0, 2, 1)
pred_lower = pred_lower.permute(0, 2, 1)
pred_hands = pred_hands.permute(0, 2, 1)
pred_face = pred_face.permute(0, 2, 1)
cls_loss_upper = cu * ClsFn(pred_upper, motion_gt["upper"])
cls_loss_lower = cl * ClsFn(pred_lower, motion_gt["lower"])
cls_loss_hands = ch * ClsFn(pred_hands, motion_gt["hands"])
cls_loss_face = cf * ClsFn(pred_face, motion_gt["face"])
return cls_loss_upper+cls_loss_lower+cls_loss_hands+cls_loss_face
def train_val_fn(cfg, batch, model, device, mode="train", **kwargs):
if mode == "train":
model.train()
kwargs["optimizer"].zero_grad()
else:
model.eval()
motion_vq = kwargs["motion_vq"]
motion_gt = batch["motion"].to(device)
audio = batch["audio"].to(device)
expressions_gt = batch["expressions"].to(device)
trans = batch["trans"].to(device)
foot_contact = batch["foot_contact"].to(device)
bs, t, jc = motion_gt.shape
j = jc // 3
speaker_id = torch.zeros(bs,1).to(device).long()
motion_gt = rc.axis_angle_to_rotation_6d(motion_gt.reshape(bs,t,j,3)).reshape(bs, t, j*6)
latent_index_dict = motion_vq.map2index(motion_gt, expressions_gt, tar_contact = foot_contact, tar_trans = trans)
latent_dict = motion_vq.map2latent(motion_gt, expressions_gt, tar_contact = foot_contact, tar_trans = trans)
masked_motion = torch.cat([motion_gt, trans, foot_contact], dim=-1)
# forward use audio
mask = torch.ones_like(masked_motion).to(device)
mask[:, :cfg.model.seed_frames] = 0
motion_pred = model(audio, speaker_id, masked_motion=masked_motion, mask=mask, use_audio=True)
loss_dict = {
"rec_seed": get_rec_loss(motion_pred, latent_dict, cfg.model.lu, cfg.model.ll, cfg.model.lh, cfg.model.lf),
"cls_seed": get_cls_loss(motion_pred, latent_index_dict, cfg.model.cu, cfg.model.cl, cfg.model.ch, cfg.model.cf, kwargs["ClsFn"]),
}
# forward use randon mask and audio
mask_ratio = (kwargs["iteration"]/135*400) * 0.95 + 0.05
mask = torch.rand(bs, t, cfg.model.pose_dims+3+4) < mask_ratio
mask = mask.float().to(device)
motion_pred_random_audio = model(audio, speaker_id, masked_motion=masked_motion, mask=mask, use_audio=True)
loss_dict["rec_audio"] = get_rec_loss(motion_pred_random_audio, latent_dict, cfg.model.lu, cfg.model.ll, cfg.model.lh, cfg.model.lf)
loss_dict["cls_audio"] = get_cls_loss(motion_pred_random_audio, latent_index_dict, cfg.model.cu, cfg.model.cl, cfg.model.ch, cfg.model.cf, kwargs["ClsFn"])
# forward use random mask
motion_pred_random_mask = model(audio, speaker_id, masked_motion=masked_motion, mask=mask, use_audio=False)
loss_dict["rec_mask"] = get_rec_loss(motion_pred_random_mask, latent_dict, cfg.model.lu, cfg.model.ll, cfg.model.lh, cfg.model.lf)
loss_dict["cls_mask"] = get_cls_loss(motion_pred_random_mask, latent_index_dict, cfg.model.cu, cfg.model.cl, cfg.model.ch, cfg.model.cf, kwargs["ClsFn"])
all_loss = sum(loss_dict.values())
loss_dict["all"] = all_loss
if mode == "train":
if cfg.solver.max_grad_norm > 0:
torch.nn.utils.clip_grad_norm_(model.parameters(), cfg.solver.max_grad_norm)
all_loss.backward()
kwargs["optimizer"].step()
kwargs["lr_scheduler"].step()
if mode == "val":
_, cls_face = torch.max(F.log_softmax(motion_pred["cls_face"], dim=2), dim=2)
_, cls_upper = torch.max(F.log_softmax(motion_pred["cls_upper"], dim=2), dim=2)
_, cls_hands = torch.max(F.log_softmax(motion_pred["cls_hands"], dim=2), dim=2)
_, cls_lower = torch.max(F.log_softmax(motion_pred["cls_lower"], dim=2), dim=2)
face_latent = motion_pred["rec_face"] if cfg.model.lf > 0 and cfg.model.cf == 0 else None
upper_latent = motion_pred["rec_upper"] if cfg.model.lu > 0 and cfg.model.cu == 0 else None
hands_latent = motion_pred["rec_hands"] if cfg.model.lh > 0 and cfg.model.ch == 0 else None
lower_latent = motion_pred["rec_lower"] if cfg.model.ll > 0 and cfg.model.cl == 0 else None
face_index = cls_face if cfg.model.cf > 0 else None
upper_index = cls_upper if cfg.model.cu > 0 else None
hands_index = cls_hands if cfg.model.ch > 0 else None
lower_index = cls_lower if cfg.model.cl > 0 else None
decode_dict = motion_vq.decode(
face_latent=face_latent, upper_latent=upper_latent, lower_latent=lower_latent, hands_latent=hands_latent,
face_index=face_index, upper_index=upper_index, lower_index=lower_index, hands_index=hands_index,)
motion_pred_rot6d = decode_dict["all_motion4inference"][:, :, :-7]
# cache feature for evaluation
kwargs["fgd_evaluator"].update(motion_pred_rot6d, motion_gt)
return loss_dict
# --------------------------------- main train loop here --------------------------------- #
def main(cfg):
seed_everything(cfg.seed)
os.environ["WANDB_API_KEY"] = cfg.wandb_key
local_rank = int(os.environ["LOCAL_RANK"]) if "LOCAL_RANK" in os.environ else 0
torch.cuda.set_device(local_rank)
device = torch.device("cuda", local_rank)
torch.distributed.init_process_group(backend="nccl")
log_dir = os.path.join(cfg.output_dir, cfg.exp_name)
experiment_ckpt_dir = os.path.join(log_dir, "checkpoints")
os.makedirs(experiment_ckpt_dir, exist_ok=True)
if local_rank == 0 and cfg.validation.wandb:
run_time = datetime.now().strftime("%Y%m%d-%H%M")
wandb.init(
project=cfg.wandb_project,
name=f"{cfg.exp_name}_{run_time}",
entity=cfg.wandb_entity,
dir=log_dir,
config=OmegaConf.to_container(cfg)
)
# init
face_motion_vq = EmageVQVAEConv.from_pretrained("H-Liu1997/emage_audio", subfolder="emage_vq/face").to(device)
upper_motion_vq = EmageVQVAEConv.from_pretrained("H-Liu1997/emage_audio", subfolder="emage_vq/upper").to(device)
lower_motion_vq = EmageVQVAEConv.from_pretrained("H-Liu1997/emage_audio", subfolder="emage_vq/lower").to(device)
hands_motion_vq = EmageVQVAEConv.from_pretrained("H-Liu1997/emage_audio", subfolder="emage_vq/hands").to(device)
global_motion_ae = EmageVAEConv.from_pretrained("H-Liu1997/emage_audio", subfolder="emage_vq/global").to(device)
motion_vq = EmageVQModel(
face_model=face_motion_vq, upper_model=upper_motion_vq,
lower_model=lower_motion_vq, hands_model=hands_motion_vq,
global_model=global_motion_ae).to(device)
for param in motion_vq.parameters():
param.requires_grad = False
motion_vq.eval()
if cfg.test:
model = EmageAudioModel.from_pretrained("/content/drive/MyDrive/weights/emage3/best").to(device)
else:
model = init_hf_class(cfg.model.name_pyfile, cfg.model.class_name, cfg.model).to(device)
model = nn.SyncBatchNorm.convert_sync_batchnorm(model)
for name, param in model.named_parameters():
param.requires_grad = True
model = DDP(model, device_ids=[local_rank], output_device=local_rank, find_unused_parameters=True, broadcast_buffers=False)
# optimizer
optimizer_cls = torch.optim.Adam
optimizer = optimizer_cls(
filter(lambda p: p.requires_grad, model.parameters()),
lr=cfg.solver.learning_rate,
betas=(cfg.solver.adam_beta1, cfg.solver.adam_beta2),
weight_decay=cfg.solver.adam_weight_decay,
eps=cfg.solver.adam_epsilon
)
lr_scheduler = get_scheduler(
cfg.solver.lr_scheduler,
optimizer=optimizer,
num_warmup_steps=cfg.solver.lr_warmup_steps * cfg.solver.gradient_accumulation_steps,
num_training_steps=cfg.solver.max_train_steps * cfg.solver.gradient_accumulation_steps
)
# loss
ClsFn = nn.NLLLoss()
# dataset
train_dataset = init_class(cfg.data.name_pyfile, cfg.data.class_name, cfg, split='train')
test_dataset = init_class(cfg.data.name_pyfile, cfg.data.class_name, cfg, split='test')
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
test_sampler = torch.utils.data.distributed.DistributedSampler(test_dataset)
train_loader = DataLoader(train_dataset, batch_size=cfg.data.train_bs, sampler=train_sampler, drop_last=True, num_workers=8)
test_loader = DataLoader(test_dataset, batch_size=cfg.data.train_bs, sampler=test_sampler, drop_last=False, num_workers=8)
# resume
if cfg.resume_from_checkpoint:
checkpoint = torch.load(cfg.resume_from_checkpoint, map_location="cpu")
model.load_state_dict(checkpoint["model_state_dict"])
optimizer.load_state_dict(checkpoint["optimizer_state_dict"])
lr_scheduler.load_state_dict(checkpoint["lr_scheduler_state_dict"])
iteration = checkpoint["iteration"]
else:
iteration = 0
if cfg.test:
iteration = 0
max_epochs = (cfg.solver.max_train_steps // len(train_loader)) + (1 if cfg.solver.max_train_steps % len(train_loader) != 0 else 0)
start_epoch = iteration // len(train_loader)
start_step_in_epoch = iteration % len(train_loader)
fgd_evaluator = FGD(download_path="./emage_evaltools/")
bc_evaluator = BC(download_path="./emage_evaltools/", sigma=0.3, order=7)
l1div_evaluator= L1div()
lvd_evaluator = LVDFace()
mse_evaluator = MSEFace()
loss_meters = {}
loss_meters_val = {}
best_fgd_val = np.inf
best_fgd_iteration_val= 0
best_fgd_test = np.inf
best_fgd_iteration_test = 0
# train loop
epoch = start_epoch
while iteration < cfg.solver.max_train_steps:
train_sampler.set_epoch(epoch)
data_start = time.time()
pbar = tqdm(train_loader, leave=True)
for i, batch in enumerate(pbar):
# for correct resume, if the dataset is very large. since we fixed the seed, we can skip the data
if i < start_step_in_epoch:
iteration += 1
continue
# test
if iteration % cfg.validation.test_steps == 0 and local_rank == 0:
test_save_path = os.path.join(log_dir, f"test_{iteration}")
os.makedirs(test_save_path, exist_ok=True)
with torch.no_grad():
test_list, save_list = inference_fn(cfg.model, model, device, cfg.data.test_meta_paths, test_save_path, motion_vq=motion_vq)
if cfg.validation.evaluation:
metrics = evaluation_fn([True]*55, test_list, save_list, fgd_evaluator, bc_evaluator, l1div_evaluator, device, lvd_evaluator, mse_evaluator)
if cfg.validation.visualization: visualization_fn(save_list, test_save_path, test_list, only_check_one=True)
if cfg.validation.evaluation: best_fgd_test, best_fgd_iteration_test = log_test(model, metrics, iteration, best_fgd_test, best_fgd_iteration_test, cfg, local_rank, experiment_ckpt_dir, test_save_path)
if cfg.test: return 0
# validation
if iteration % cfg.validation.validation_steps == 0:
loss_meters = {}
loss_meters_val = {}
fgd_evaluator.reset()
pbar_val = tqdm(test_loader, leave=True)
data_start_val = time.time()
for j, batch in enumerate(pbar_val):
data_time_val = time.time() - data_start_val
with torch.no_grad():
val_loss_dict = train_val_fn(cfg, batch, model, device, mode="val", fgd_evaluator=fgd_evaluator, motion_vq=motion_vq, ClsFn=ClsFn, iteration=iteration)
net_time_val = time.time() - data_start_val
val_loss_dict["fgd"] = fgd_evaluator.compute() if j == len(test_loader) - 1 else 0
log_train_val(cfg, val_loss_dict, local_rank, loss_meters_val, pbar_val, epoch, max_epochs, iteration, net_time_val, data_time_val, optimizer, "Val ")
data_start_val = time.time()
if cfg.debug and j > 1: break
if local_rank == 0:
best_fgd_val, best_fgd_iteration_val = save_last_and_best_ckpt(
model, optimizer, lr_scheduler, iteration, experiment_ckpt_dir, best_fgd_val, best_fgd_iteration_val, val_loss_dict["fgd"], lower_is_better=True, mertic_name="fgd")
# train
data_time = time.time() - data_start
loss_dict = train_val_fn(cfg, batch, model, device, mode="train", motion_vq=motion_vq, optimizer=optimizer, lr_scheduler=lr_scheduler, ClsFn=ClsFn, iteration=iteration)
net_time = time.time() - data_start - data_time
log_train_val(cfg, loss_dict, local_rank, loss_meters, pbar, epoch, max_epochs, iteration, net_time, data_time, optimizer, "Train")
data_start = time.time()
iteration += 1
start_step_in_epoch = 0
epoch += 1
if local_rank == 0 and cfg.validation.wandb:
wandb.finish()
torch.distributed.destroy_process_group()
# --------------------------------- utils fn here --------------------------------- #
def evaluation_fn(joint_mask, gt_list, pred_list, fgd_evaluator, bc_evaluator, l1_evaluator, device, lvd_evaluator, mse_evaluator):
fgd_evaluator.reset()
bc_evaluator.reset()
l1_evaluator.reset()
lvd_evaluator.reset()
mse_evaluator.reset()
for test_file in tqdm(gt_list, desc="Evaluation"):
# only load selective joints
pred_file = [item for item in pred_list if item["video_id"] == test_file["video_id"]][0]
if not pred_file:
print(f"Missing prediction for {test_file['video_id']}")
continue
# print(test_file["motion_path"], pred_file["motion_path"])
gt_dict = beat_format_load(test_file["motion_path"], joint_mask)
pred_dict = beat_format_load(pred_file["motion_path"], joint_mask)
motion_gt = gt_dict["poses"]
motion_pred = pred_dict["poses"]
expressions_gt = gt_dict["expressions"]
expressions_pred = pred_dict["expressions"]
betas = gt_dict["betas"]
# motion_gt = recover_from_mask(motion_gt, joint_mask) # t1*165
# motion_pred = recover_from_mask(motion_pred, joint_mask) # t2*165
t = min(motion_gt.shape[0], motion_pred.shape[0])
motion_gt = motion_gt[:t]
motion_pred = motion_pred[:t]
expressions_gt = expressions_gt[:t]
expressions_pred = expressions_pred[:t]
# bc and l1 require position representation
motion_position_pred = get_motion_rep_numpy(motion_pred, device=device, betas=betas)["position"] # t*55*3
motion_position_pred = motion_position_pred.reshape(t, -1)
# ignore the start and end 2s, this may for beat dataset only
audio_beat = bc_evaluator.load_audio(test_file["audio_path"], t_start=2 * 16000, t_end=int((t-60)/30*16000))
motion_beat = bc_evaluator.load_motion(motion_position_pred, t_start=60, t_end=t-60, pose_fps=30, without_file=True)
bc_evaluator.compute(audio_beat, motion_beat, length=t-120, pose_fps=30)
# audio_beat = bc_evaluator.load_audio(test_file["audio_path"], t_start=0 * 16000, t_end=int((t-0)/30*16000))
# motion_beat = bc_evaluator.load_motion(motion_position_pred, t_start=0, t_end=t-0, pose_fps=30, without_file=True)
# bc_evaluator.compute(audio_beat, motion_beat, length=t-0, pose_fps=30)
l1_evaluator.compute(motion_position_pred)
face_position_pred = get_motion_rep_numpy(motion_pred, device=device, expressions=expressions_pred, expression_only=True, betas=betas)["vertices"] # t -1
face_position_gt = get_motion_rep_numpy(motion_gt, device=device, expressions=expressions_gt, expression_only=True, betas=betas)["vertices"]
lvd_evaluator.compute(face_position_pred, face_position_gt)
mse_evaluator.compute(face_position_pred, face_position_gt)
# fgd requires rotation 6d representaiton
motion_gt = torch.from_numpy(motion_gt).to(device).unsqueeze(0)
motion_pred = torch.from_numpy(motion_pred).to(device).unsqueeze(0)
motion_gt = rc.axis_angle_to_rotation_6d(motion_gt.reshape(1, t, 55, 3)).reshape(1, t, 55*6)
motion_pred = rc.axis_angle_to_rotation_6d(motion_pred.reshape(1, t, 55, 3)).reshape(1, t, 55*6)
fgd_evaluator.update(motion_pred.float(), motion_gt.float())
metrics = {}
metrics["fgd"] = fgd_evaluator.compute()
metrics["bc"] = bc_evaluator.avg()
metrics["l1"] = l1_evaluator.avg()
metrics["lvd"] = lvd_evaluator.avg()
metrics["mse"] = mse_evaluator.avg()
return metrics
def visualization_fn(pred_list, save_path, gt_list=None, only_check_one=True):
if gt_list is None: # single visualization
for i in range(len(pred_list)):
fast_render.render_one_sequence(
pred_list[i]["motion_path"],
save_path,
pred_list[i]["audio_path"],
model_folder="./evaluation/smplx_models/",
)
if only_check_one: break
else: # paired visualization, pad the translation
for i in range(len(pred_list)):
npz_pred = np.load(pred_list[i]["motion_path"], allow_pickle=True)
gt_file = [item for item in gt_list if item["video_id"] == pred_list[i]["video_id"]][0]
if not gt_file:
print(f"Missing prediction for {pred_list[i]['video_id']}")
continue
npz_gt = np.load(gt_file["motion_path"], allow_pickle=True)
t = npz_gt["poses"].shape[0]
np.savez(
os.path.join(save_path, f"{pred_list[i]['video_id']}_transpad.npz"),
betas=npz_pred['betas'][:t],
poses=npz_pred['poses'][:t],
expressions=npz_pred['expressions'][:t],
trans=npz_pred["trans"][:t],
model='smplx2020',
gender='neutral',
mocap_frame_rate=30,
)
fast_render.render_one_sequence(
os.path.join(save_path, f"{pred_list[i]['video_id']}_transpad.npz"),
gt_file["motion_path"],
save_path,
pred_list[i]["audio_path"],
model_folder="./evaluation/smplx_models/",
)
if only_check_one: break
def log_test(model, metrics, iteration, best_mertics, best_iteration, cfg, local_rank, experiment_ckpt_dir, video_save_path=None):
if local_rank == 0:
print(f"\n Test Results at iteration {iteration}:")
for key, value in metrics.items():
print(f" {key}: {value:.10f}")
if cfg.validation.wandb:
for key, value in metrics.items():
wandb.log({f"test/{key}": value}, step=iteration)
if cfg.validation.wandb and cfg.validation.visualization:
videos_to_log = []
for filename in os.listdir(video_save_path):
if filename.endswith(".mp4"):
videos_to_log.append(wandb.Video(os.path.join(video_save_path, filename)))
if videos_to_log:
wandb.log({"test/videos": videos_to_log}, step=iteration)
if metrics["fgd"] < best_mertics:
best_mertics = metrics["fgd"]
best_iteration = iteration
model.module.save_pretrained(os.path.join(experiment_ckpt_dir, "test_best"))
# print(metrics, best_mertics, best_iteration)
message = f"Current Test FGD: {metrics['fgd']:.4f} (Best: {best_mertics:.4f} at iteration {best_iteration})"
log_metric_with_box(message)
return best_mertics, best_iteration
def log_metric_with_box(message):
box_width = len(message) + 2
border = "-" * box_width
print(f"\n{border}")
print(f"|{message}|")
print(f"{border}\n")
def log_train_val(cfg, loss_dict, local_rank, loss_meters, pbar, epoch, max_epochs, iteration, net_time, data_time, optimizer, ptype="Train"):
new_loss_dict = {}
for k, v in loss_dict.items():
if "fgd" in k: continue
v_cpu = torch.as_tensor(v).float().cpu().item()
if k not in loss_meters:
loss_meters[k] = {"sum":0,"count":0}
loss_meters[k]["sum"] += v_cpu
loss_meters[k]["count"] += 1
new_loss_dict[k] = v_cpu
mem_used = torch.cuda.memory_reserved() / 1E9
lr = optimizer.param_groups[0]["lr"]
loss_str = " ".join([f"{k}: {new_loss_dict[k]:.4f}({loss_meters[k]['sum']/loss_meters[k]['count']:.4f})" for k in new_loss_dict])
desc = f"{ptype}: Epoch[{epoch}/{max_epochs}] Iter[{iteration}] {loss_str} lr: {lr:.2E} data_time: {data_time:.3f} net_time: {net_time:.3f} mem: {mem_used:.2f}GB"
pbar.set_description(desc)
pbar.bar_format = "{desc} {n_fmt}/{total_fmt} [{elapsed}<{remaining}, {rate_fmt}]"
if cfg.validation.wandb and local_rank == 0:
for k, v in new_loss_dict.items():
wandb.log({f"loss/{ptype}/{k}": v}, step=iteration)
def save_last_and_best_ckpt(model, optimizer, lr_scheduler, iteration, save_dir, previous_best, best_iteration, current, lower_is_better=True, mertic_name="fgd"):
checkpoint = {
"model_state_dict": model.state_dict(),
"optimizer_state_dict": optimizer.state_dict(),
"lr_scheduler_state_dict": lr_scheduler.state_dict(),
"iteration": iteration,
}
torch.save(checkpoint, os.path.join(save_dir, "last.bin"))
model.module.save_pretrained(os.path.join(save_dir, "last"))
if (lower_is_better and current < previous_best) or (not lower_is_better and current > previous_best):
previous_best = current
best_iteration = iteration
shutil.copy(os.path.join(save_dir, "last.bin"), os.path.join(save_dir, "best.bin"))
model.module.save_pretrained(os.path.join(save_dir, "best"))
message = f"Current interation {iteration} {mertic_name}: {current:.4f} (Best: {previous_best:.4f} at iteration {best_iteration})"
log_metric_with_box(message)
return previous_best, best_iteration
def init_hf_class(module_name, class_name, config, **kwargs):
module = importlib.import_module(module_name)
model_class = getattr(module, class_name)
config_class = model_class.config_class
config = config_class(config_obj=config)
instance = model_class(config, **kwargs)
return instance
def init_class(module_name, class_name, config, **kwargs):
module = importlib.import_module(module_name)
model_class = getattr(module, class_name)
instance = model_class(config, **kwargs)
return instance
def seed_everything(seed):
os.environ['PYTHONHASHSEED'] = str(seed)
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.enabled = True
def init_env():
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, default="./configs/train/stage2.yaml")
parser.add_argument("--debug", action="store_true")
parser.add_argument("--wandb", action="store_true")
parser.add_argument("--visualization", action="store_true")
parser.add_argument("--evaluation", action="store_true")
parser.add_argument("--test", action="store_true")
parser.add_argument('overrides', nargs=argparse.REMAINDER)
args = parser.parse_args()
config = OmegaConf.load(args.config)
config.exp_name = os.path.splitext(os.path.basename(args.config))[0]
if args.overrides: config = OmegaConf.merge(config, OmegaConf.from_dotlist(args.overrides))
if args.debug:
config.wandb_project = "debug"
config.exp_name = "debug"
config.solver.max_train_steps = 4
else:
run_time = datetime.now().strftime("%Y%m%d-%H%M")
config.exp_name = config.exp_name + "_" + run_time
if args.wandb:
config.validation.wandb = True
if args.visualization:
config.validation.visualization = True
if args.evaluation:
config.validation.evaluation = True
if args.test:
config.test = True
save_dir = os.path.join(config.output_dir, config.exp_name)
os.makedirs(save_dir, exist_ok=True)
sanity_check_dir = os.path.join(save_dir, 'sanity_check')
os.makedirs(sanity_check_dir, exist_ok=True)
with open(os.path.join(sanity_check_dir, f'{config.exp_name}.yaml'), 'w') as f:
OmegaConf.save(config, f)
current_dir = Path.cwd()
for py_file in current_dir.rglob('*.py'):
dest_path = Path(sanity_check_dir) / py_file.relative_to(current_dir)
dest_path.parent.mkdir(parents=True, exist_ok=True)
shutil.copy(py_file, dest_path)
return config
if __name__ == "__main__":
config = init_env()
main(config)