Muhammad Haris
Update app.py
bde74e3 verified
raw
history blame
3.78 kB
import os
os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'
import tensorflow as tf
import cv2
import numpy as np
import math
import gradio as gr
class ShopliftingPrediction:
def __init__(self, model_path, frame_width, frame_height, sequence_length):
self.frame_width = frame_width
self.frame_height = frame_height
self.sequence_length = sequence_length
self.model_path = model_path
self.message = ''
def load_model(self):
custom_objects = {
'Conv2D': tf.keras.layers.Conv2D,
'MaxPooling2D': tf.keras.layers.MaxPooling2D,
'TimeDistributed': tf.keras.layers.TimeDistributed,
'LSTM': tf.keras.layers.LSTM,
'Dense': tf.keras.layers.Dense,
'Flatten': tf.keras.layers.Flatten,
'Dropout': tf.keras.layers.Dropout,
'Orthogonal': tf.keras.initializers.Orthogonal,
}
self.model = tf.keras.models.load_model(self.model_path, custom_objects=custom_objects)
def generate_message_content(self, probability, label):
if label == 0:
if probability <= 50:
self.message = "No theft"
elif probability <= 75:
self.message = "There is little chance of theft"
elif probability <= 85:
self.message = "High probability of theft"
else:
self.message = "Very high probability of theft"
elif label == 1:
if probability <= 50:
self.message = "No theft"
elif probability <= 75:
self.message = "The movement is confusing, watch"
elif probability <= 85:
self.message = "I think it's normal, but it's better to watch"
else:
self.message = "Movement is normal"
def Pre_Process_Video(self, current_frame, previous_frame):
diff = cv2.absdiff(current_frame, previous_frame)
diff = cv2.GaussianBlur(diff, (3, 3), 0)
resized_frame = cv2.resize(diff, (self.frame_height, self.frame_width))
gray_frame = cv2.cvtColor(resized_frame, cv2.COLOR_BGR2GRAY)
normalized_frame = gray_frame / 255
return normalized_frame
def Single_Frame_Predict(self, frames_queue):
probabilities = self.model.predict(np.expand_dims(frames_queue, axis=0))[0]
predicted_label = np.argmax(probabilities)
probability = math.floor(max(probabilities[0], probabilities[1]) * 100)
return [probability, predicted_label]
def process_frame(self, frame, frames_queue, previous):
normalized_frame = self.Pre_Process_Video(frame, previous)
frames_queue.append(normalized_frame)
if len(frames_queue) == self.sequence_length:
[probability, predicted_label] = self.Single_Frame_Predict(frames_queue)
self.generate_message_content(probability, predicted_label)
frames_queue = []
cv2.rectangle(frame, (0, 0), (640, 40), (255, 255, 255), -1)
cv2.putText(frame, self.message, (1, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 1, cv2.LINE_AA)
return frame
def inference(model_path):
shoplifting_prediction = ShopliftingPrediction(model_path, 64, 64, 30)
shoplifting_prediction.load_model()
def process_video(video_frame):
frame = shoplifting_prediction.process_frame(video_frame, [], video_frame)
return frame
return process_video
model_path = 'lrcn_160S_90_90Q.h5'
process_video = inference(model_path)
iface = gr.Interface(
fn=process_video,
inputs=gr.inputs.Video(type="numpy"),
outputs="video",
live=True,
capture_session=True # Ensures the video stream is captured properly
)
iface.launch()