|
|
|
import tensorflow as tf |
|
import numpy as np |
|
from keras.models import load_model |
|
from tensorflow.keras.preprocessing.text import Tokenizer |
|
import pickle |
|
from tensorflow.keras.preprocessing.sequence import pad_sequences |
|
import os |
|
from pathlib import Path |
|
import pandas as pd |
|
import plotly.express as px |
|
import keras |
|
import unicodedata as ud |
|
|
|
from underthesea import word_tokenize |
|
|
|
from phoBERT import BERT_predict |
|
|
|
|
|
LSTM_model = tf.keras.models.load_model('lstm_model.tf') |
|
|
|
GRU_model = tf.keras.models.load_model('gru_model.tf') |
|
|
|
def LSTM_predict(x): |
|
|
|
pred_proba = LSTM_model.predict([x])[0] |
|
|
|
pred_proba = [round(i,2) for i in pred_proba] |
|
|
|
return pred_proba |
|
|
|
def GRU_predict(x): |
|
|
|
pred_proba = GRU_model.predict([x])[0] |
|
|
|
pred_proba = [round(i,2) for i in pred_proba] |
|
|
|
return pred_proba |
|
|
|
def tokenize(x): |
|
x = ud.normalize('NFKC', x) |
|
x = word_tokenize(x, format="text") |
|
return x |
|
|
|
|
|
def judge(x): |
|
|
|
result = [] |
|
|
|
x = tokenize(x) |
|
|
|
lstm_pred = LSTM_predict(x) |
|
gru_pred = GRU_predict(x) |
|
|
|
result_lstm = np.round(lstm_pred, 2) |
|
result_gru = np.round(gru_pred, 2) |
|
|
|
for i in range(6): |
|
result.append((result_lstm[i]+result_gru[i])/2) |
|
|
|
return (result) |
|
|
|
|
|
def judgePlus(x): |
|
|
|
result = [] |
|
|
|
x = tokenize(x) |
|
|
|
lstm_pred = LSTM_predict(x) |
|
gru_pred = GRU_predict(x) |
|
try: |
|
bert_pred = BERT_predict(x) |
|
except: |
|
bert_pred = np.average([lstm_pred, gru_pred], axis=0) |
|
|
|
|
|
result_lstm = np.round(lstm_pred, 2) |
|
result_gru = np.round(gru_pred, 2) |
|
result_bert = np.round(bert_pred, 2) |
|
|
|
if((result_lstm[0]+result_gru[0])<(result_bert[0]*2)): |
|
for i in range(6): |
|
result.append((result_bert[i])/1) |
|
else: |
|
for i in range(6): |
|
result.append((result_lstm[i]+result_gru[i])/2) |
|
|
|
return (result) |
|
|
|
|
|
def judgeBert(x): |
|
|
|
result = [] |
|
|
|
x = tokenize(x) |
|
|
|
try: |
|
bert_pred = BERT_predict(x) |
|
except: |
|
bert_pred = np.zeros(6, dtype=float) |
|
|
|
result_bert = np.round(bert_pred, 2) |
|
|
|
for i in range(6): |
|
result.append((result_bert[i])/1) |
|
|
|
return (result) |
|
|