# import gradio as gr import tensorflow as tf import numpy as np from keras.models import load_model from tensorflow.keras.preprocessing.text import Tokenizer import pickle from tensorflow.keras.preprocessing.sequence import pad_sequences import os from pathlib import Path import pandas as pd import plotly.express as px import keras from underthesea import word_tokenize #from phoBERT import BERT_predict # Load tokenizer # fp = Path(__file__).with_name('tokenizer.pkl') # with open(fp,mode="rb") as f: # tokenizer = pickle.load(f) #Load LSTM #fp = Path(__file__).with_name('lstm_model.h5') LSTM_model = tf.keras.models.load_model('lstm_model.tf') #Load GRU #fp = Path(__file__).with_name('gru_model.h5') GRU_model = tf.keras.models.load_model('gru_model.tf') def tokenizer_pad(tokenizer,comment_text,max_length=200): comment_text = word_tokenize(comment_text, format="text") comment_text = [comment_text] tokenized_text = tokenizer.texts_to_sequences(comment_text) padded_sequences = pad_sequences(sequences=tokenized_text,maxlen=max_length,padding="post",truncating="post") return padded_sequences def LSTM_predict(x): # x = tokenizer_pad(tokenizer=tokenizer,comment_text=x) pred_proba = LSTM_model.predict([x])[0] pred_proba = [round(i,2) for i in pred_proba] #print(pred_proba) return pred_proba def GRU_predict(x): # x = tokenizer_pad(tokenizer=tokenizer,comment_text=x) pred_proba = GRU_model.predict([x])[0] pred_proba = [round(i,2) for i in pred_proba] #print(pred_proba) return pred_proba def plot(result): label = ['độc hại', 'cực kì độc hại', 'tục tĩu', 'đe dọa', 'xúc phạm', 'thù ghét cá nhân'] data = pd.DataFrame() data['Nhãn'] = label data['Điểm'] = result #print(data) p = px.bar(data, x='Nhãn', y='Điểm', color='Nhãn', range_y=[0, 1] ) return p pass def judge(x): label = ['độc hại', 'cực kì độc hại', 'tục tĩu', 'đe dọa', 'xúc phạm', 'thù ghét cá nhân'] result = [] judge_result = [] lstm_pred = LSTM_predict(x) gru_pred = GRU_predict(x) # bert_pred = BERT_predict(x) #print(result) return_result = 'Result' result_lstm = np.round(lstm_pred, 2) result_gru = np.round(gru_pred, 2) # result_bert = np.round(bert_pred, 2) for i in range(6): result.append((result_lstm[i]+result_gru[i])/2) return (result)