Spaces:
Running
Running
# import gradio as gr | |
import tensorflow as tf | |
import numpy as np | |
from keras.models import load_model | |
from tensorflow.keras.preprocessing.text import Tokenizer | |
import pickle | |
from tensorflow.keras.preprocessing.sequence import pad_sequences | |
import os | |
from pathlib import Path | |
import pandas as pd | |
import plotly.express as px | |
#Load tokenizer | |
fp = Path(__file__).with_name('tokenizer.pkl') | |
with open(fp,mode="rb") as f: | |
tokenizer = pickle.load(f) | |
#Load LSTM | |
fp = Path(__file__).with_name('lstm_model.h5') | |
LSTM_model = tf.keras.models.load_model(fp, compile=True) | |
#Load GRU | |
fp = Path(__file__).with_name('gru_model.h5') | |
GRU_model = load_model(fp) | |
def tokenizer_pad(tokenizer,comment_text,max_length=200): | |
comment_text = [comment_text] | |
tokenized_text = tokenizer.texts_to_sequences(comment_text) | |
padded_sequences = pad_sequences(sequences=tokenized_text,maxlen=max_length,padding="post",truncating="post") | |
return padded_sequences | |
def LSTM_predict(x): | |
x = tokenizer_pad(tokenizer=tokenizer,comment_text=x) | |
pred_proba = LSTM_model.predict(x)[0] | |
pred_proba = [round(i,2) for i in pred_proba] | |
#print(pred_proba) | |
return pred_proba | |
def GRU_predict(x): | |
x = tokenizer_pad(tokenizer=tokenizer,comment_text=x) | |
pred_proba = GRU_model.predict(x)[0] | |
pred_proba = [round(i,2) for i in pred_proba] | |
#print(pred_proba) | |
return pred_proba | |
def plot(result): | |
label = ['độc hại', 'cực kì độc hại', 'tục tĩu', 'đe dọa', 'xúc phạm', 'thù ghét cá nhân'] | |
data = pd.DataFrame() | |
data['Nhãn'] = label | |
data['Điểm'] = result | |
#print(data) | |
p = px.bar(data, x='Nhãn', y='Điểm', color='Nhãn', range_y=[0, 1] ) | |
return p | |
pass | |
def judge(x): | |
label = ['độc hại', 'cực kì độc hại', 'tục tĩu', 'đe dọa', 'xúc phạm', 'thù ghét cá nhân'] | |
result = [] | |
judge_result = [] | |
lstm_pred = LSTM_predict(x) | |
gru_pred = GRU_predict(x) | |
#print(result) | |
return_result = 'Result' | |
result_lstm = np.round(lstm_pred, 2) | |
result_gru = np.round(gru_pred, 2) | |
for i in range(6): | |
result.append((result_lstm[i]+result_gru[i])/2) | |
#print(final_result) | |
return_result += '\nMô hình LSTM\n' | |
return_result += f"{result_lstm}\n" | |
return_result += '\nMô hình GRU\n' | |
return_result += f"{result_gru}\n" | |
return (result) | |
# if __name__ == "__main__": | |
# # print("Loading") | |
# # while(True): | |
# # string = input("\nMời nhập văn bản: ") | |
# # os.system('cls') | |
# # print(f"Văn bản đã nhập: {string}") | |
# # judge(string) | |
# interface = gr.Interface(fn=judge, | |
# inputs=gr.Textbox(lines=2, placeholder='Please write something', label="Input Text"), | |
# outputs=['text','plot','text']) | |
# interface.launch() |