Spaces:
Running
Running
add BERT model
Browse files- app.py +5 -14
- phoBERT.py +79 -0
- phoBertModel.pth +3 -0
- requirements.txt +3 -1
app.py
CHANGED
@@ -11,9 +11,10 @@ import pandas as pd
|
|
11 |
import plotly.express as px
|
12 |
import keras
|
13 |
|
14 |
-
|
15 |
from underthesea import word_tokenize
|
16 |
|
|
|
|
|
17 |
#Load tokenizer
|
18 |
fp = Path(__file__).with_name('tokenizer.pkl')
|
19 |
with open(fp,mode="rb") as f:
|
@@ -81,26 +82,16 @@ def judge(x):
|
|
81 |
|
82 |
lstm_pred = LSTM_predict(x)
|
83 |
gru_pred = GRU_predict(x)
|
84 |
-
|
85 |
#print(result)
|
86 |
|
87 |
return_result = 'Result'
|
88 |
result_lstm = np.round(lstm_pred, 2)
|
89 |
result_gru = np.round(gru_pred, 2)
|
|
|
90 |
for i in range(6):
|
91 |
-
result.append((result_lstm[i]+result_gru[i])/
|
92 |
-
|
93 |
|
94 |
-
|
95 |
-
#print(final_result)
|
96 |
-
return_result += '\nMô hình LSTM\n'
|
97 |
-
return_result += f"{result_lstm}\n"
|
98 |
-
|
99 |
-
|
100 |
-
return_result += '\nMô hình GRU\n'
|
101 |
-
return_result += f"{result_gru}\n"
|
102 |
-
|
103 |
-
|
104 |
return (result)
|
105 |
|
106 |
|
|
|
11 |
import plotly.express as px
|
12 |
import keras
|
13 |
|
|
|
14 |
from underthesea import word_tokenize
|
15 |
|
16 |
+
from phoBERT import BERT_predict
|
17 |
+
|
18 |
#Load tokenizer
|
19 |
fp = Path(__file__).with_name('tokenizer.pkl')
|
20 |
with open(fp,mode="rb") as f:
|
|
|
82 |
|
83 |
lstm_pred = LSTM_predict(x)
|
84 |
gru_pred = GRU_predict(x)
|
85 |
+
bert_pred = BERT_predict(x)
|
86 |
#print(result)
|
87 |
|
88 |
return_result = 'Result'
|
89 |
result_lstm = np.round(lstm_pred, 2)
|
90 |
result_gru = np.round(gru_pred, 2)
|
91 |
+
result_bert = np.round(bert_pred, 2)
|
92 |
for i in range(6):
|
93 |
+
result.append((result_lstm[i]+result_gru[i]+result_bert[i])/3)
|
|
|
94 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
return (result)
|
96 |
|
97 |
|
phoBERT.py
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import AutoModel, AutoTokenizer
|
3 |
+
from underthesea import word_tokenize
|
4 |
+
|
5 |
+
phobert = AutoModel.from_pretrained("vinai/phobert-base")
|
6 |
+
tokenizer = AutoTokenizer.from_pretrained("vinai/phobert-base")
|
7 |
+
|
8 |
+
class PhoBertModel(torch.nn.Module):
|
9 |
+
def __init__(self):
|
10 |
+
super(PhoBertModel, self).__init__()
|
11 |
+
self.bert = phobert
|
12 |
+
self.pre_classifier = torch.nn.Linear(self.bert.config.hidden_size, self.bert.config.hidden_size)
|
13 |
+
self.dropout = torch.nn.Dropout(0.1)
|
14 |
+
self.classifier = torch.nn.Linear(self.bert.config.hidden_size, 6)
|
15 |
+
|
16 |
+
def forward(self, input_ids, attention_mask, token_type_ids):
|
17 |
+
hidden_state, output_1 = self.bert(
|
18 |
+
input_ids = input_ids,
|
19 |
+
attention_mask=attention_mask,
|
20 |
+
return_dict = False
|
21 |
+
)
|
22 |
+
pooler = self.pre_classifier(output_1)
|
23 |
+
activation_1 = torch.nn.Tanh()(pooler)
|
24 |
+
|
25 |
+
drop = self.dropout(activation_1)
|
26 |
+
|
27 |
+
output_2 = self.classifier(drop)
|
28 |
+
# activation_2 = torch.nn.Tanh()(output_2)
|
29 |
+
|
30 |
+
output = torch.nn.Sigmoid()(output_2)
|
31 |
+
return output
|
32 |
+
|
33 |
+
def getModel():
|
34 |
+
model = torch.load('phoBertModel.pth', map_location=torch.device('cpu'))
|
35 |
+
model.eval()
|
36 |
+
return model
|
37 |
+
|
38 |
+
model = getModel()
|
39 |
+
|
40 |
+
def tokenize(data):
|
41 |
+
|
42 |
+
max_length = 200
|
43 |
+
|
44 |
+
for line in data:
|
45 |
+
|
46 |
+
token = tokenizer.encode_plus(
|
47 |
+
line,
|
48 |
+
max_length=200,
|
49 |
+
add_special_tokens=False,
|
50 |
+
pad_to_max_length=True
|
51 |
+
)
|
52 |
+
|
53 |
+
ids = torch.tensor([token['input_ids']])
|
54 |
+
mask = torch.tensor([token['attention_mask']])
|
55 |
+
token_type_ids = torch.tensor([token['token_type_ids']])
|
56 |
+
|
57 |
+
|
58 |
+
output = {
|
59 |
+
'ids': ids,
|
60 |
+
'mask': mask,
|
61 |
+
'token_type_ids': token_type_ids,
|
62 |
+
}
|
63 |
+
#outputs.append(output)
|
64 |
+
|
65 |
+
return output
|
66 |
+
|
67 |
+
def BERT_predict(text):
|
68 |
+
text = word_tokenize(text)
|
69 |
+
text = [text]
|
70 |
+
token = tokenize(text)
|
71 |
+
|
72 |
+
ids = token['ids']
|
73 |
+
mask = token['mask']
|
74 |
+
token_type_ids = token['token_type_ids']
|
75 |
+
|
76 |
+
result = model(ids, mask, token_type_ids)
|
77 |
+
print(result)
|
78 |
+
return result.tolist()[0]
|
79 |
+
|
phoBertModel.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d5fca9d837d05b1e8330798e32a59b5200bf677d5cf2f178727dcd131c86230b
|
3 |
+
size 542499629
|
requirements.txt
CHANGED
@@ -7,4 +7,6 @@ pathlib
|
|
7 |
plotly
|
8 |
pandas
|
9 |
keras==2.15.0
|
10 |
-
underthesea
|
|
|
|
|
|
7 |
plotly
|
8 |
pandas
|
9 |
keras==2.15.0
|
10 |
+
underthesea
|
11 |
+
torch
|
12 |
+
transformers
|