HMPhuoc commited on
Commit
9f8d226
1 Parent(s): 3c61a05

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -19
app.py CHANGED
@@ -15,10 +15,10 @@ from underthesea import word_tokenize
15
 
16
  #from phoBERT import BERT_predict
17
 
18
- #Load tokenizer
19
- # fp = Path(__file__).with_name('tokenizer.pkl')
20
- # with open(fp,mode="rb") as f:
21
- # tokenizer = pickle.load(f)
22
 
23
  #Load LSTM
24
  fp = Path(__file__).with_name('lstm_model.h5')
@@ -40,7 +40,7 @@ def tokenizer_pad(tokenizer,comment_text,max_length=200):
40
  return padded_sequences
41
 
42
  def LSTM_predict(x):
43
- #x = tokenizer_pad(tokenizer=tokenizer,comment_text=x)
44
 
45
  pred_proba = LSTM_model.predict(x)[0]
46
 
@@ -51,7 +51,7 @@ def LSTM_predict(x):
51
  return pred_proba
52
 
53
  def GRU_predict(x):
54
- #x = tokenizer_pad(tokenizer=tokenizer,comment_text=x)
55
 
56
 
57
  pred_proba = GRU_model.predict(x)[0]
@@ -93,16 +93,3 @@ def judge(x):
93
  result.append((result_lstm[i]+result_gru[i])/2)
94
 
95
  return (result)
96
-
97
-
98
- # if __name__ == "__main__":
99
- # # print("Loading")
100
- # # while(True):
101
- # # string = input("\nMời nhập văn bản: ")
102
- # # os.system('cls')
103
- # # print(f"Văn bản đã nhập: {string}")
104
- # # judge(string)
105
- # interface = gr.Interface(fn=judge,
106
- # inputs=gr.Textbox(lines=2, placeholder='Please write something', label="Input Text"),
107
- # outputs=['text','plot','text'])
108
- # interface.launch()
 
15
 
16
  #from phoBERT import BERT_predict
17
 
18
+ Load tokenizer
19
+ fp = Path(__file__).with_name('tokenizer.pkl')
20
+ with open(fp,mode="rb") as f:
21
+ tokenizer = pickle.load(f)
22
 
23
  #Load LSTM
24
  fp = Path(__file__).with_name('lstm_model.h5')
 
40
  return padded_sequences
41
 
42
  def LSTM_predict(x):
43
+ x = tokenizer_pad(tokenizer=tokenizer,comment_text=x)
44
 
45
  pred_proba = LSTM_model.predict(x)[0]
46
 
 
51
  return pred_proba
52
 
53
  def GRU_predict(x):
54
+ x = tokenizer_pad(tokenizer=tokenizer,comment_text=x)
55
 
56
 
57
  pred_proba = GRU_model.predict(x)[0]
 
93
  result.append((result_lstm[i]+result_gru[i])/2)
94
 
95
  return (result)