screenshot2html / app.py
VictorSanh's picture
sanity hack
327287c
raw
history blame
7.51 kB
import os
import subprocess
import torch
import gradio as gr
from gradio_client.client import DEFAULT_TEMP_DIR
from playwright.sync_api import sync_playwright
from threading import Thread
from transformers import AutoProcessor, AutoModelForCausalLM, TextIteratorStreamer
from transformers.image_utils import to_numpy_array, PILImageResampling, ChannelDimension
from typing import List
from PIL import Image
from transformers.image_transforms import resize, to_channel_dimension_format
DEVICE = torch.device("cuda")
PROCESSOR = AutoProcessor.from_pretrained(
"HuggingFaceM4/VLM_WebSight_finetuned",
)
MODEL = AutoModelForCausalLM.from_pretrained(
"HuggingFaceM4/VLM_WebSight_finetuned",
trust_remote_code=True,
torch_dtype=torch.bfloat16,
).to(DEVICE)
if MODEL.config.use_resampler:
image_seq_len = MODEL.config.perceiver_config.resampler_n_latents
else:
image_seq_len = (
MODEL.config.vision_config.image_size // MODEL.config.vision_config.patch_size
) ** 2
BOS_TOKEN = PROCESSOR.tokenizer.bos_token
BAD_WORDS_IDS = PROCESSOR.tokenizer(["<image>", "<fake_token_around_image>"], add_special_tokens=False).input_ids
## Utils
def convert_to_rgb(image):
# `image.convert("RGB")` would only work for .jpg images, as it creates a wrong background
# for transparent images. The call to `alpha_composite` handles this case
if image.mode == "RGB":
return image
image_rgba = image.convert("RGBA")
background = Image.new("RGBA", image_rgba.size, (255, 255, 255))
alpha_composite = Image.alpha_composite(background, image_rgba)
alpha_composite = alpha_composite.convert("RGB")
return alpha_composite
# The processor is the same as the Idefics processor except for the BICUBIC interpolation inside siglip,
# so this is a hack in order to redefine ONLY the transform method
def custom_transform(x):
x = convert_to_rgb(x)
x = to_numpy_array(x)
x = resize(x, (960, 960), resample=PILImageResampling.BILINEAR)
x = PROCESSOR.image_processor.rescale(x, scale=1 / 255)
x = PROCESSOR.image_processor.normalize(
x,
mean=PROCESSOR.image_processor.image_mean,
std=PROCESSOR.image_processor.image_std
)
x = to_channel_dimension_format(x, ChannelDimension.FIRST)
x = torch.tensor(x)
return x
## End of Utils
IMAGE_GALLERY_PATHS = [
f"example_images/{ex_image}"
for ex_image in os.listdir(f"example_images")
]
def install_playwright():
try:
subprocess.run(["playwright", "install"], check=True)
print("Playwright installation successful.")
except subprocess.CalledProcessError as e:
print(f"Error during Playwright installation: {e}")
install_playwright()
def add_file_gallery(
selected_state: gr.SelectData,
gallery_list: List[str]
):
return Image.open(gallery_list.root[selected_state.index].image.path)
def render_webpage(
html_css_code,
):
with sync_playwright() as p:
browser = p.chromium.launch(headless=True)
context = browser.new_context(
user_agent=(
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/107.0.0.0"
" Safari/537.36"
)
)
page = context.new_page()
page.set_content(html_css_code)
page.wait_for_load_state("networkidle")
output_path_screenshot = f"{DEFAULT_TEMP_DIR}/{hash(html_css_code)}.png"
_ = page.screenshot(path=output_path_screenshot, full_page=True)
context.close()
browser.close()
return Image.open(output_path_screenshot)
def model_inference(
image,
):
if image is None:
raise ValueError("`image` is None. It should be a PIL image.")
inputs = PROCESSOR.tokenizer(
f"{BOS_TOKEN}<fake_token_around_image>{'<image>' * image_seq_len}<fake_token_around_image>",
return_tensors="pt",
add_special_tokens=False,
)
inputs["pixel_values"] = PROCESSOR.image_processor(
[image],
transform=custom_transform
)
inputs = {
k: v.to(DEVICE)
for k, v in inputs.items()
}
streamer = TextIteratorStreamer(
PROCESSOR.tokenizer,
decode_kwargs=dict(
skip_special_tokens=True
),
skip_prompt=True,
)
generation_kwargs = dict(
inputs,
bad_words_ids=BAD_WORDS_IDS,
max_length=4096,
streamer=streamer,
)
thread = Thread(
target=MODEL.generate,
kwargs=generation_kwargs,
)
thread.start()
generated_text = ""
for new_text in streamer:
generated_text += new_text
print("before yield")
# yield generated_text, image
print("after yield")
# Sanity hack
generated_text = generated_text.replace("</s>", "")
rendered_page = render_webpage(generated_text)
return generated_text, rendered_page
generated_html = gr.Code(
label="Extracted HTML",
elem_id="generated_html",
)
rendered_html = gr.Image(
label="Rendered HTML",
show_download_button=False,
show_share_button=False,
)
# rendered_html = gr.HTML(
# label="Rendered HTML"
# )
css = """
.gradio-container{max-width: 1000px!important}
h1{display: flex;align-items: center;justify-content: center;gap: .25em}
*{transition: width 0.5s ease, flex-grow 0.5s ease}
"""
with gr.Blocks(title="Screenshot to HTML", theme=gr.themes.Base(), css=css) as demo:
with gr.Row(equal_height=True):
with gr.Column(scale=4, min_width=250) as upload_area:
imagebox = gr.Image(
type="pil",
label="Screenshot to extract",
visible=True,
sources=["upload", "clipboard"],
)
with gr.Group():
with gr.Row():
submit_btn = gr.Button(
value="▶️ Submit", visible=True, min_width=120
)
clear_btn = gr.ClearButton(
[imagebox, generated_html, rendered_html], value="🧹 Clear", min_width=120
)
regenerate_btn = gr.Button(
value="🔄 Regenerate", visible=True, min_width=120
)
with gr.Column(scale=4):
rendered_html.render()
with gr.Row():
generated_html.render()
with gr.Row():
template_gallery = gr.Gallery(
value=IMAGE_GALLERY_PATHS,
label="Templates Gallery",
allow_preview=False,
columns=5,
elem_id="gallery",
show_share_button=False,
height=400,
)
gr.on(
triggers=[
imagebox.upload,
submit_btn.click,
regenerate_btn.click,
],
fn=model_inference,
inputs=[imagebox],
outputs=[generated_html, rendered_html],
queue=False,
)
regenerate_btn.click(
fn=model_inference,
inputs=[imagebox],
outputs=[generated_html, rendered_html],
queue=False,
)
template_gallery.select(
fn=add_file_gallery,
inputs=[template_gallery],
outputs=[imagebox],
queue=False,
).success(
fn=model_inference,
inputs=[imagebox],
outputs=[generated_html, rendered_html],
queue=False,
)
demo.load(queue=False)
demo.queue(max_size=40, api_open=False)
demo.launch(max_threads=400)