print("first test for hugging face") import gradio as gr from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch # Load the tokenizer and model tokenizer = AutoTokenizer.from_pretrained("Remicm/sentiment-analysis-model-for-socialmedia") model = AutoModelForSequenceClassification.from_pretrained("Remicm/sentiment-analysis-model-for-socialmedia") # Function to predict sentiment def predict_sentiment(text): inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True) with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits predicted_class = torch.argmax(logits, dim=1).item() # Define sentiment labels (adjust based on your model's output) sentiments = ["Negative", "Neutral", "Positive"] return sentiments[predicted_class] # Create the Gradio interface interface = gr.Interface(fn=predict_sentiment, inputs="text", outputs="label", title="Sentiment Analysis of Instagram Comments", description="Enter a comment to determine its sentiment (Positive, Neutral, Negative).") # Launch the interface interface.launch()