import gradio as gr # Load the model pipeline model = pipeline("audio-classification", model="HareemFatima/distilhubert-finetuned-stutterdetection") # Define a function to classify the audio and return the predicted label def classify_audio(audio_input): prediction = model(audio_input) predicted_label = prediction[0]["label"] # Define label mapping dictionary label_map = { 0: "nonstutter", 1: "prolongation", 2: "repetition", 3: "blocks" } # Use the dictionary to get the label return label_map.get(predicted_label, "Unknown") # Create the Gradio interface audio_input = gr.inputs.Audio(source="microphone", type="file") output_label = gr.outputs.Label() gr.Interface(fn=classify_audio, inputs=audio_input, outputs=output_label).launch()