Spaces:
Runtime error
Runtime error
HareemFatima
commited on
Commit
•
18e0da2
1
Parent(s):
ec29075
Update app.py
Browse files
app.py
CHANGED
@@ -1,47 +1,32 @@
|
|
1 |
import streamlit as st
|
2 |
-
import sounddevice as sd
|
3 |
-
import soundfile as sf
|
4 |
from transformers import pipeline
|
5 |
|
6 |
# Load the model pipeline
|
7 |
model = pipeline("audio-classification", model="HareemFatima/distilhubert-finetuned-stutterdetection")
|
8 |
|
9 |
-
# Define a function to map predicted labels to types of stuttering
|
10 |
-
def map_label_to_stutter_type(label):
|
11 |
-
if label == 0:
|
12 |
-
return "nonstutter"
|
13 |
-
elif label == 1:
|
14 |
-
return "prolongation"
|
15 |
-
elif label == 2:
|
16 |
-
return "repetition"
|
17 |
-
elif label == 3:
|
18 |
-
return "blocks"
|
19 |
-
else:
|
20 |
-
return "Unknown"
|
21 |
-
|
22 |
-
# Function to classify audio input and return the stutter type
|
23 |
-
def classify_audio(audio_input):
|
24 |
-
# Call your model pipeline to classify the audio
|
25 |
-
prediction = model(audio_input)
|
26 |
-
# Get the predicted label
|
27 |
-
predicted_label = prediction[0]["label"]
|
28 |
-
# Map the label to the corresponding stutter type
|
29 |
-
stutter_type = map_label_to_stutter_type(predicted_label)
|
30 |
-
return stutter_type
|
31 |
-
|
32 |
# Streamlit app
|
33 |
def main():
|
34 |
st.title("Stutter Classification App")
|
35 |
audio_input = st.audio("Capture Audio", format="audio/wav", start_recording=True, channels=1)
|
36 |
if st.button("Stop Recording"):
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
if __name__ == "__main__":
|
47 |
main()
|
|
|
1 |
import streamlit as st
|
|
|
|
|
2 |
from transformers import pipeline
|
3 |
|
4 |
# Load the model pipeline
|
5 |
model = pipeline("audio-classification", model="HareemFatima/distilhubert-finetuned-stutterdetection")
|
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
# Streamlit app
|
8 |
def main():
|
9 |
st.title("Stutter Classification App")
|
10 |
audio_input = st.audio("Capture Audio", format="audio/wav", start_recording=True, channels=1)
|
11 |
if st.button("Stop Recording"):
|
12 |
+
# Assuming the recording is saved as "recording.wav"
|
13 |
+
recording_path = "recording.wav"
|
14 |
+
# Call the model pipeline to classify the audio
|
15 |
+
prediction = model(recording_path)
|
16 |
+
# Get the predicted label
|
17 |
+
predicted_label = prediction[0]["label"]
|
18 |
+
# Map the label to the corresponding stutter type
|
19 |
+
if predicted_label == 0:
|
20 |
+
stutter_type = "nonstutter"
|
21 |
+
elif predicted_label == 1:
|
22 |
+
stutter_type = "prolongation"
|
23 |
+
elif predicted_label == 2:
|
24 |
+
stutter_type = "repetition"
|
25 |
+
elif predicted_label == 3:
|
26 |
+
stutter_type = "blocks"
|
27 |
+
else:
|
28 |
+
stutter_type = "Unknown"
|
29 |
+
st.write("Predicted Stutter Type:", stutter_type)
|
30 |
|
31 |
if __name__ == "__main__":
|
32 |
main()
|