Harshi's picture
Update app.py
efdf215
raw
history blame
20.9 kB
# -*- coding: utf-8 -*-
"""MarchMachineLearningMania2021.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1FeGm3qNqLAlrQd6R9EkuNFWy9oOlnxWy
"""
# Commented out IPython magic to ensure Python compatibility.
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
# %matplotlib inline
from sklearn.model_selection import GroupKFold, KFold
from sklearn.metrics import log_loss
import lightgbm as lgb
from google.colab import drive
drive.mount('/content/drive')
data = '/content/drive/MyDrive/MarchMachineLearningMania2021/ncaam-march-mania-2021 (1)/MDataFiles_Stage2'
STAGE_1 = False
MRSCResults = pd.read_csv(data + '/MRegularSeasonCompactResults.csv')
MRSCResults
A_w = MRSCResults[MRSCResults.WLoc == 'A']\
.groupby(['Season','WTeamID'])['WTeamID'].count().to_frame()\
.rename(columns={"WTeamID": "win_A"})
print(A_w.head())
N_w = MRSCResults[MRSCResults.WLoc == 'N']\
.groupby(['Season','WTeamID'])['WTeamID'].count().to_frame()\
.rename(columns={"WTeamID": "win_N"})
H_w = MRSCResults[MRSCResults.WLoc == 'H']\
.groupby(['Season','WTeamID'])['WTeamID'].count().to_frame()\
.rename(columns={"WTeamID": "win_H"})
win = A_w.join(N_w, how='outer').join(H_w, how='outer').fillna(0)
H_l = MRSCResults[MRSCResults.WLoc == 'A']\
.groupby(['Season','LTeamID'])['LTeamID'].count().to_frame()\
.rename(columns={"LTeamID": "lost_H"})
N_l = MRSCResults[MRSCResults.WLoc == 'N']\
.groupby(['Season','LTeamID'])['LTeamID'].count().to_frame()\
.rename(columns={"LTeamID": "lost_N"})
A_l = MRSCResults[MRSCResults.WLoc == 'H']\
.groupby(['Season','LTeamID'])['LTeamID'].count().to_frame()\
.rename(columns={"LTeamID": "lost_A"})
lost = A_l.join(N_l, how='outer').join(H_l, how='outer').fillna(0)
print(win)
print(lost)
win.index = win.index.rename(['Season', 'TeamID'])
lost.index = lost.index.rename(['Season', 'TeamID'])
wl = win.join(lost, how='outer').reset_index()
print(wl)
wl['win_pct_A'] = wl['win_A'] / (wl['win_A'] + wl['lost_A'])
wl['win_pct_N'] = wl['win_N'] / (wl['win_N'] + wl['lost_N'])
wl['win_pct_H'] = wl['win_H'] / (wl['win_H'] + wl['lost_H'])
wl['win_pct_All'] = (wl['win_A'] + wl['win_N'] + wl['win_H']) / \
(wl['win_A'] + wl['win_N'] + wl['win_H'] + wl['lost_A']\
+ wl['lost_N'] + wl['lost_H'])
print(wl)
del A_w, N_w, H_w, H_l, N_l, A_l, win, lost
MRSCResults['relScore'] = MRSCResults.WScore - MRSCResults.LScore
w_scr = MRSCResults.loc[:, ['Season', 'WTeamID', 'WScore', 'WLoc','relScore']]
w_scr.columns = ['Season', 'TeamID','Score','Loc','relScore']
#print(w_scr)
l_scr = MRSCResults.loc[:, ['Season', 'LTeamID', 'LScore', 'WLoc','relScore']]
#print(l_scr)
l_scr['WLoc'] = l_scr.WLoc.apply(lambda x: 'H' if x == 'A' else 'A' if x == 'H' else 'N')
l_scr['relScore'] = -1 * l_scr.relScore
l_scr.columns = ['Season', 'TeamID','Score','Loc','relScore']
#print(l_scr)
wl_scr = pd.concat([w_scr,l_scr])
#print(wl_scr)
A_scr = wl_scr[wl_scr.Loc == 'A'].groupby(['Season','TeamID'])\
['Score','relScore'].mean()\
.rename(columns={"Score": "Score_A", "relScore": "relScore_A"})
#print(A_scr)
N_scr = wl_scr[wl_scr.Loc == 'N'].groupby(['Season','TeamID'])\
['Score','relScore'].mean()\
.rename(columns={"Score": "Score_N", "relScore": "relScore_N"})
H_scr = wl_scr[wl_scr.Loc == 'H'].groupby(['Season','TeamID'])\
['Score','relScore'].mean()\
.rename(columns={"Score": "Score_H", "relScore": "relScore_H"})
All_scr = wl_scr.groupby(['Season','TeamID'])['Score','relScore']\
.mean().rename(columns={"Score": "Score_All", "relScore": "relScore_All"})
scr = A_scr.join(N_scr, how='outer').join(H_scr, how='outer')\
.join(All_scr, how='outer').fillna(0).reset_index()
print(scr)
del w_scr, l_scr, wl_scr, A_scr, H_scr, N_scr, All_scr
MRSDetailedResults = pd.read_csv(data + '/MRegularSeasonDetailedResults.csv')
MRSDetailedResults
w = MRSDetailedResults.loc[:, ['Season', 'WTeamID', 'WFGM','WFGA','WFGM3'
,'WFGA3','WFTM','WFTA','WOR','WDR','WAst',
'WTO','WStl','WBlk','WPF']]
w.columns = ['Season', 'TeamID', 'FGM','FGA','FGM3','FGA3','FTM','FTA','OR','DR',
'Ast','TO','Stl','Blk','PF']
#print(w)
l = MRSDetailedResults.loc[:, ['Season', 'LTeamID', 'LFGM','LFGA','LFGM3',
'LFGA3','LFTM','LFTA','LOR','LDR','LAst',
'LTO','LStl','LBlk','LPF']]
l.columns = ['Season', 'TeamID', 'FGM','FGA','FGM3','FGA3','FTM','FTA','OR','DR',
'Ast','TO','Stl','Blk','PF']
detail = pd.concat([w,l])
#print(detail)
detail['goal_rate'] = detail.FGM / detail.FGA
detail['3p_goal_rate'] = detail.FGM3 / detail.FGA3
detail['ft_goal_rate'] = detail.FTM / detail.FTA
dt = detail.groupby(['Season','TeamID'])['FGM','FGA','FGM3','FGA3','FTM','FTA',
'OR','DR','Ast','TO','Stl','Blk','PF',
'goal_rate', '3p_goal_rate',
'ft_goal_rate']\
.mean().fillna(0).reset_index()
print(dt)
del w, l, detail
MMOrdinals = pd.read_csv(data + '/MMasseyOrdinals.csv')
MMOrdinals
MOR_127_128 = MMOrdinals[(MMOrdinals.SystemName == 'MOR') & ((MMOrdinals.RankingDayNum == 127) \
| (MMOrdinals.RankingDayNum == 128))]\
[['Season','TeamID','OrdinalRank']]
MOR_50_51 = MMOrdinals[(MMOrdinals.SystemName == 'MOR') & \
((MMOrdinals.RankingDayNum == 50) \
| (MMOrdinals.RankingDayNum == 51))]\
[['Season','TeamID','OrdinalRank']]
MOR_15_16 = MMOrdinals[(MMOrdinals.SystemName == 'MOR') & \
((MMOrdinals.RankingDayNum == 15) \
| (MMOrdinals.RankingDayNum == 16))]\
[['Season','TeamID','OrdinalRank']]
MOR_127_128 = MOR_127_128.rename(columns={'OrdinalRank':'OrdinalRank_127_128'})
#print(MOR_127_128)
MOR_50_51 = MOR_50_51.rename(columns={'OrdinalRank':'OrdinalRank_50_51'})
#print(MOR_50_51)
MOR_15_16 = MOR_15_16.rename(columns={'OrdinalRank':'OrdinalRank_15_16'})
#print(MOR_15_16)
MOR = MOR_127_128.merge(MOR_50_51, how='left', on=['Season','TeamID'])\
.merge(MOR_15_16, how='left', on=['Season','TeamID'])
#print(MOR)
## normalizing Rank values by its season maxium as it varies by seasons
MOR_max = MOR.groupby('Season')['OrdinalRank_127_128','OrdinalRank_50_51',
'OrdinalRank_15_16'].max().reset_index()
MOR_max.columns = ['Season', 'maxRank_127_128', 'maxRank_50_51', 'maxRank_15_16']
#print(MOR_max)
MOR_tmp = MMOrdinals[(MMOrdinals.SystemName == 'MOR') \
& (MMOrdinals.RankingDayNum < 133)]
#print(MOR_tmp)
MOR_stats = MOR_tmp.groupby(['Season','TeamID'])['OrdinalRank']\
.agg(['max','min','std','mean']).reset_index()
MOR_stats.columns = ['Season','TeamID','RankMax','RankMin','RankStd','RankMean']
#print(MOR_stats)
MOR = MOR.merge(MOR_max, how='left', on='Season')\
.merge(MOR_stats, how='left', on=['Season','TeamID'])
#print(MOR)
MOR['OrdinalRank_127_128'] = MOR['OrdinalRank_127_128'] / MOR['maxRank_127_128']
MOR['OrdinalRank_50_51'] = MOR['OrdinalRank_50_51'] / MOR['maxRank_50_51']
MOR['OrdinalRank_15_16'] = MOR['OrdinalRank_15_16'] / MOR['maxRank_15_16']
MOR['RankTrans_50_51_to_127_128'] = MOR['OrdinalRank_127_128'] \
- MOR['OrdinalRank_50_51']
MOR['RankTrans_15_16_to_127_128'] = MOR['OrdinalRank_127_128'] \
- MOR['OrdinalRank_15_16']
wl_1 = wl.loc[:,['Season','TeamID','win_pct_A','win_pct_N',
'win_pct_H','win_pct_All']]
wl_1.columns = [str(col) + '_1' if col not in ['Season','TeamID'] \
else str(col) for col in wl_1.columns ]
#print(wl_1)
wl_2 = wl.loc[:,['Season','TeamID','win_pct_A','win_pct_N',
'win_pct_H','win_pct_All']]
wl_2.columns = [str(col) + '_2' if col not in ['Season','TeamID'] \
else str(col) for col in wl_2.columns ]
#print(wl_2)
scr_1 = scr.copy()
scr_1.columns = [str(col) + '_1' if col not in ['Season','TeamID'] \
else str(col) for col in scr_1.columns ]
#print(scr_1)
scr_2 = scr.copy()
scr_2.columns = [str(col) + '_2' if col not in ['Season','TeamID'] \
else str(col) for col in scr_2.columns ]
#print(scr_2)
dt_1 = dt.copy()
dt_1.columns = [str(col) + '_1' if col not in ['Season','TeamID'] \
else str(col) for col in dt_1.columns ]
dt_2 = dt.copy()
dt_2.columns = [str(col) + '_2' if col not in ['Season','TeamID'] \
else str(col) for col in dt_2.columns ]
MOR_1 = MOR.copy()
MOR_1.columns = [str(col) + '_1' if col not in ['Season','TeamID'] \
else str(col) for col in MOR_1.columns ]
MOR_2 = MOR.copy()
MOR_2.columns = [str(col) + '_2' if col not in ['Season','TeamID'] \
else str(col) for col in MOR_2.columns ]
TCResults = pd.read_csv(data + '/MNCAATourneyCompactResults.csv')
TCResults
tourney1 = TCResults.loc[:, ['Season','WTeamID','LTeamID']]
tourney1.columns = ['Season','TeamID1','TeamID2']
tourney1['result'] = 1
tourney2 = TCResults.loc[:, ['Season','LTeamID','WTeamID']]
tourney2.columns = ['Season','TeamID1','TeamID2']
tourney2['result'] = 0
print(TCResults)
print(tourney1)
print(tourney2)
tourney = pd.concat([tourney1, tourney2])
print(tourney)
del tourney1, tourney2
def merge_data(df):
df = df.merge(wl_1, how='left', left_on=['Season','TeamID1'],
right_on=['Season','TeamID'])
df = df.merge(wl_2, how='left', left_on=['Season','TeamID2'],
right_on=['Season','TeamID'])
df = df.drop(['TeamID_x','TeamID_y'], axis=1)
df = df.merge(scr_1, how='left', left_on=['Season','TeamID1'],
right_on=['Season','TeamID'])
df = df.merge(scr_2, how='left', left_on=['Season','TeamID2'],
right_on=['Season','TeamID'])
df = df.drop(['TeamID_x','TeamID_y'], axis=1)
df = df.merge(dt_1, how='left', left_on=['Season','TeamID1'],
right_on=['Season','TeamID'])
df = df.merge(dt_2, how='left', left_on=['Season','TeamID2'],
right_on=['Season','TeamID'])
df = df.drop(['TeamID_x','TeamID_y'], axis=1)
df = df.merge(MOR_1, how='left', left_on=['Season','TeamID1'],
right_on=['Season','TeamID'])
df = df.merge(MOR_2, how='left', left_on=['Season','TeamID2'],
right_on=['Season','TeamID'])
df = df.drop(['TeamID_x','TeamID_y'], axis=1)
df['OrdinalRank_127_128_diff'] = df['OrdinalRank_127_128_1'] \
- df['OrdinalRank_127_128_2']
df['magic1'] = df['OrdinalRank_127_128_diff'] - df['RankMean_1']
df['magic2'] = df['RankMean_1'] - df['RankMean_2']
df['magic3'] = df['OrdinalRank_127_128_diff'] - df['RankMean_2']
df['magic11'] = df['OrdinalRank_127_128_diff'] * df['RankMean_1']
df['magic21'] = df['RankMean_1'] * df['RankMean_2']
df['magic31'] = df['OrdinalRank_127_128_diff'] * df['RankMean_2']
df['magic12'] = df['OrdinalRank_127_128_diff'] / df['RankMean_1']
df['magic22'] = df['RankMean_1'] / df['RankMean_2']
df['magic32'] = df['OrdinalRank_127_128_diff'] / df['RankMean_2']
df = df.fillna(-1)
for col in df.columns:
if (df[col] == np.inf).any() or (df[col] == -np.inf).any():
df[col][(df[col] == np.inf) | (df[col] == -np.inf)] = -1
return df
tourney = merge_data(tourney)
tourney = tourney.loc[tourney.Season >= 2003,:].reset_index(drop=True)
if STAGE_1:
tourney = tourney.loc[tourney.Season < 2015, :]
if STAGE_1:
MSampleSubmission = pd.read_csv(data + '/MSampleSubmissionStage1.csv')
else:
MSampleSubmission = pd.read_csv(data + '/MSampleSubmissionStage2.csv')
test1 = MSampleSubmission.copy()
test1['Season'] = test1.ID.apply(lambda x: int(x[0:4]))
test1['TeamID1'] = test1.ID.apply(lambda x: int(x[5:9]))
test1['TeamID2'] = test1.ID.apply(lambda x: int(x[10:14]))
test2 = MSampleSubmission.copy()
test2['Season'] = test2.ID.apply(lambda x: int(x[0:4]))
test2['TeamID1'] = test2.ID.apply(lambda x: int(x[10:14]))
test2['TeamID2'] = test2.ID.apply(lambda x: int(x[5:9]))
test = pd.concat([test1,test2]).drop(['Pred'], axis=1)
print(test)
test = merge_data(test)
print(test)
tourney
test
X = tourney.drop(['Season','TeamID1','TeamID2','result'], axis=1)
y = tourney["result"]
s = tourney["Season"]
X_test = test.drop(['ID', 'Season','TeamID1','TeamID2'], axis=1)
X_test
s.head()
s.value_counts()
len(X_test)
def model_training(X, y, cv, groups, params, metric, early_stopping=10, \
plt_iter=True, X_test=[], cat_features=[]):
feature_importance = pd.DataFrame()
val_scores=[]
train_evals=[]
valid_evals=[]
if len(X_test) > 0:
test_pred = np.zeros(len(X_test))
for idx, (train_index, val_index) in enumerate(cv.split(X, y, groups)):
print("###### fold %d ######" % (idx+1))
X_train, X_val = X.iloc[train_index], X.iloc[val_index]
y_train, y_val = y.iloc[train_index], y.iloc[val_index]
model = lgb.LGBMClassifier(**params)
model.fit(X_train, y_train,
eval_set=[(X_train, y_train), (X_val, y_val)],
early_stopping_rounds=early_stopping,
verbose=20
)
val_scores.append(model.best_score_['valid_1'][metric])
train_evals.append(model.evals_result_['training'][metric])
valid_evals.append(model.evals_result_['valid_1'][metric])
if len(X_test) > 0:
test_pred = test_pred + model.predict_proba(X_test, num_iteration=model.best_iteration_)[:,1]
fold_importance = pd.DataFrame()
fold_importance["feature"] = X_train.columns
fold_importance["importance"] = model.feature_importances_
fold_importance["fold"] = idx+1
feature_importance = pd.concat([feature_importance, fold_importance]
, axis=0)
if plt_iter:
fig, axs = plt.subplots(2, 2, figsize=(9,6))
for i, ax in enumerate(axs.flatten()):
ax.plot(train_evals[i], label='training')
ax.plot(valid_evals[i], label='validation')
ax.set(xlabel='interations', ylabel=f'{metric}')
ax.set_title(f'fold {i+1}', fontsize=12)
ax.legend(loc='upper right', prop={'size': 9})
fig.tight_layout()
plt.show()
print('### CV scores by fold ###')
for i in range(cv.get_n_splits(X)):
print(f'fold {i+1}: {val_scores[i]:.4f}')
print('CV mean score: {0:.4f}, std: {1:.4f}.'\
.format(np.mean(val_scores), np.std(val_scores)))
feature_importance = feature_importance[["feature", "importance"]]\
.groupby("feature").mean().sort_values(
by="importance", ascending=False)
feature_importance.reset_index(inplace=True)
if len(X_test) > 0:
test_pred = test_pred / cv.get_n_splits(X)
return feature_importance, test_pred
else:
return feature_importance
lgb_params = {'objective': 'binary',
'metric': 'binary_logloss',
'boosting': 'gbdt',
'num_leaves': 31,
'feature_fraction': 0.8,
'bagging_fraction': 0.8,
'bagging_freq': 5,
'learning_rate': 0.1,
'n_estimators': 1000,
}
N_FOLDS = 10
# Commented out IPython magic to ensure Python compatibility.
# %%time
# group_kfold = GroupKFold(n_splits=N_FOLDS)
#
# feature_importance, test_pred = model_training(X, y, group_kfold, s, lgb_params, 'binary_logloss', plt_iter = True, X_test = X_test)
plt.figure(figsize=(10, 10));
sns.barplot(x="importance", y="feature", data=feature_importance[:30])
plt.title('Feature Importnace')
import warnings
warnings.filterwarnings("ignore")
import numpy as np
import pandas as pd
from sklearn.experimental import enable_hist_gradient_boosting
from sklearn.ensemble import HistGradientBoostingRegressor, HistGradientBoostingClassifier, RandomForestClassifier
from sklearn.model_selection import KFold, GroupKFold
from sklearn.linear_model import LinearRegression, LogisticRegression
from sklearn.svm import SVC
from sklearn.metrics import log_loss
from tqdm.notebook import tqdm
import glob
import os
import gc
import xgboost as xgb
train = tourney
test = test
xgb_params= {
"objective": "binary:logistic",
"max_depth": 2,
"learning_rate": 0.1,
"colsample_bytree": 0.8,
"subsample": 0.8,
"min_child_weight": 30,
"n_jobs": 2,
"seed": 2021,
'tree_method': "gpu_hist",
"gpu_id": 0,
'predictor': 'gpu_predictor'
}
y = train["result"]
s = train["Season"]
X = train.drop(['Season','TeamID1','TeamID2','result'], axis=1)
X_test = test.drop(['ID', 'Season','TeamID1','TeamID2'], axis=1)
train_oof = np.zeros((X.shape[0],))
test_preds = 0
train_oof.shape
NUM_FOLDS = 5
kf = GroupKFold(n_splits=NUM_FOLDS)
max_iter = 550
for f, (train_ind, val_ind) in tqdm(enumerate(kf.split(X, y, s))):
train_df, val_df = X.iloc[train_ind], X.iloc[val_ind]
train_target, val_target = y.iloc[train_ind], y.iloc[val_ind]
train_df_xgb = xgb.DMatrix(train_df, label=train_target)
val_df_xgb = xgb.DMatrix(val_df, label=val_target)
model = HistGradientBoostingClassifier(max_iter=max_iter, validation_fraction=None, learning_rate=0.01, max_depth=2, min_samples_leaf=32)
model1 = RandomForestClassifier()
model2 = LogisticRegression(C=1)
model3 = xgb.train(xgb_params, train_df_xgb, 1000)
model = model.fit(train_df, train_target)
model1 = model1.fit(train_df, train_target)
model2 = model2.fit(train_df, train_target)
temp_oof = (model.predict_proba(val_df)[:,1] + model1.predict_proba(val_df)[:,1] + model2.predict_proba(val_df)[:,1] + model3.predict(val_df_xgb)) / 4
temp_test = (model.predict_proba(X_test)[:,1] + model1.predict_proba(X_test)[:,1] + model2.predict_proba(X_test)[:,1] + model3.predict(xgb.DMatrix(X_test))) / 4
train_oof[val_ind] = temp_oof
test_preds += temp_test / NUM_FOLDS
print(log_loss(val_target, temp_oof))
print('CV', log_loss(y, train_oof))
np.save('train_oof', train_oof)
np.save('test_preds', test_preds)
test = test
MSampleSubmission = pd.read_csv(data + '/MSampleSubmissionStage2.csv')
idx = test_preds.shape[0] //2
test_preds[idx:] = 1 - test_preds[idx:]
pred = pd.concat([test.ID, pd.Series(test_preds)], axis=1).groupby('ID')[0]\
.mean().reset_index().rename(columns={0:'Pred'})
sub3 = MSampleSubmission.drop(['Pred'],axis=1).merge(pred, on='ID')
pred_3 = sub3['Pred']
0.5539459504635523
idx = test_pred.shape[0] //2
test_pred[idx:] = 1 - test_pred[idx:]
pred = pd.concat([test.ID, pd.Series(test_pred)], axis=1).groupby('ID')[0]\
.mean().reset_index().rename(columns={0:'Pred'})
sub = MSampleSubmission.drop(['Pred'],axis=1).merge(pred, on='ID')
sub['Pred'] = sub['Pred'] * 0.3 + sub3['Pred'] * 0.7
sub.to_csv('submission.csv', index=False)
sub.head()
if STAGE_1:
rslt = pd.DataFrame()
TCResults_s = TCResults.loc[TCResults.Season >= 2015,:]
rslt['season'] = TCResults_s.Season
rslt['team1'] = TCResults_s.apply(lambda x: x.WTeamID \
if x.WTeamID < x.LTeamID else x.LTeamID
, axis=1)
rslt['team2'] = TCResults_s.apply(lambda x: x.WTeamID \
if x.WTeamID > x.LTeamID else x.LTeamID
, axis=1)
rslt['wl'] = TCResults_s.apply(lambda x: 1 if x.WTeamID < x.LTeamID else 0
, axis=1)
rslt['ID'] = rslt.apply(lambda x: str(x.season) + '_' + str(x.team1) \
+ '_' + str(x.team2), axis=1)
sub2 = sub.merge(rslt.loc[:,['ID','wl']], how='inner', on='ID')
preds = []
for i in sub2.Pred:
preds.append([1-i, i])
print('Test logloss is {:.5f}'.format(log_loss(sub2.wl.values, preds)))
0.51971
sub
import gradio as gr
def prediction_result(teamID_1, teamID_2):
id = f"2021_{int(teamID_1)}_{int(teamID_2)}"
pred = sub["Pred"].loc[sub["ID"] == id]
p = pred.values
return f"The winning probability of teamID {int(teamID_1)} is {round(p[0] * 100, 2)}%"
demo = gr.Interface(
fn = prediction_result,
inputs = ["number", "number"],
outputs = "text",
title = "MENS MARCH MANIA 2021",
description = """Predicted the outcome of the 2021 tournament""",
examples = [[1101, 1104], [1101, 1111], [1101, 1116], [1101, 1124], [1101, 1140]],
live = True
)
demo.launch(share = True)