llama_VLM / app.py
Harshithtd's picture
Update app.py
acc7d19 verified
from transformers import MllamaForConditionalGeneration, AutoProcessor, TextIteratorStreamer
from PIL import Image
import torch
from threading import Thread
import gradio as gr
from gradio import FileData
import time
import spaces
# Load model directly
# Load model directly
from transformers import AutoProcessor, AutoModelForPreTraining
processor = AutoProcessor.from_pretrained("unsloth/Llama-3.2-11B-Vision-Instruct-bnb-4bit")
model = AutoModelForPreTraining.from_pretrained("unsloth/Llama-3.2-11B-Vision-Instruct-bnb-4bit")
@spaces.CPU
def bot_streaming(message, history, max_new_tokens=250):
txt = message["text"]
ext_buffer = f"{txt}"
messages = []
images = []
for i, msg in enumerate(history):
if isinstance(msg[0], tuple):
messages.append({"role": "user", "content": [{"type": "text", "text": history[i+1][0]}, {"type": "image"}]})
messages.append({"role": "assistant", "content": [{"type": "text", "text": history[i+1][1]}]})
images.append(Image.open(msg[0][0]).convert("RGB"))
elif isinstance(history[i-1], tuple) and isinstance(msg[0], str):
pass
elif isinstance(history[i-1][0], str) and isinstance(msg[0], str):
messages.append({"role": "user", "content": [{"type": "text", "text": msg[0]}]})
messages.append({"role": "assistant", "content": [{"type": "text", "text": msg[1]}]})
if len(message["files"]) == 1:
if isinstance(message["files"][0], str):
image = Image.open(message["files"][0]).convert("RGB")
else:
image = Image.open(message["files"][0]["path"]).convert("RGB")
images.append(image)
messages.append({"role": "user", "content": [{"type": "text", "text": txt}, {"type": "image"}]})
else:
messages.append({"role": "user", "content": [{"type": "text", "text": txt}]})
texts = processor.apply_chat_template(messages, add_generation_prompt=True)
if images == []:
inputs = processor(text=texts, return_tensors="pt") # No .to("cuda"), stays on CPU
else:
inputs = processor(text=texts, images=images, return_tensors="pt") # No .to("cuda"), stays on CPU
streamer = TextIteratorStreamer(processor, skip_special_tokens=True, skip_prompt=True)
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens)
generated_text = ""
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
generated_text_without_prompt = buffer
time.sleep(0.01)
yield buffer
demo = gr.ChatInterface(
fn=bot_streaming,
title="Multimodal Llama",
examples=[], # No examples provided
textbox=gr.MultimodalTextbox(),
additional_inputs=[gr.Slider(
minimum=10,
maximum=500,
value=250,
step=10,
label="Maximum number of new tokens to generate",
)],
cache_examples=False,
description="Try Multimodal Llama by Meta with transformers in this demo. Upload an image, and start chatting about it. To learn more about Llama Vision, visit [our blog post](https://huggingface.co/blog/llama32).",
stop_btn="Stop Generation",
fill_height=True,
multimodal=True
)
demo.launch(debug=True)