Vakyansh-Hindi-TTS / ttsv /tts_infer /transliterate.py
harveen
Add
d4357ea
raw
history blame
31.6 kB
import torch
import torch.nn as nn
import numpy as np
import pandas as pd
import random
import sys
import os
import json
import enum
import traceback
import re
F_DIR = os.path.dirname(os.environ.get('translit_model_base_path', os.path.realpath(__file__)))
class XlitError(enum.Enum):
lang_err = "Unsupported langauge ID requested ;( Please check available languages."
string_err = "String passed is incompatable ;("
internal_err = "Internal crash ;("
unknown_err = "Unknown Failure"
loading_err = "Loading failed ;( Check if metadata/paths are correctly configured."
##=================== Network ==================================================
class Encoder(nn.Module):
def __init__(
self,
input_dim,
embed_dim,
hidden_dim,
rnn_type="gru",
layers=1,
bidirectional=False,
dropout=0,
device="cpu",
):
super(Encoder, self).__init__()
self.input_dim = input_dim # src_vocab_sz
self.enc_embed_dim = embed_dim
self.enc_hidden_dim = hidden_dim
self.enc_rnn_type = rnn_type
self.enc_layers = layers
self.enc_directions = 2 if bidirectional else 1
self.device = device
self.embedding = nn.Embedding(self.input_dim, self.enc_embed_dim)
if self.enc_rnn_type == "gru":
self.enc_rnn = nn.GRU(
input_size=self.enc_embed_dim,
hidden_size=self.enc_hidden_dim,
num_layers=self.enc_layers,
bidirectional=bidirectional,
)
elif self.enc_rnn_type == "lstm":
self.enc_rnn = nn.LSTM(
input_size=self.enc_embed_dim,
hidden_size=self.enc_hidden_dim,
num_layers=self.enc_layers,
bidirectional=bidirectional,
)
else:
raise Exception("XlitError: unknown RNN type mentioned")
def forward(self, x, x_sz, hidden=None):
"""
x_sz: (batch_size, 1) - Unpadded sequence lengths used for pack_pad
"""
batch_sz = x.shape[0]
# x: batch_size, max_length, enc_embed_dim
x = self.embedding(x)
## pack the padded data
# x: max_length, batch_size, enc_embed_dim -> for pack_pad
x = x.permute(1, 0, 2)
x = nn.utils.rnn.pack_padded_sequence(x, x_sz, enforce_sorted=False) # unpad
# output: packed_size, batch_size, enc_embed_dim
# hidden: n_layer**num_directions, batch_size, hidden_dim | if LSTM (h_n, c_n)
output, hidden = self.enc_rnn(
x
) # gru returns hidden state of all timesteps as well as hidden state at last timestep
## pad the sequence to the max length in the batch
# output: max_length, batch_size, enc_emb_dim*directions)
output, _ = nn.utils.rnn.pad_packed_sequence(output)
# output: batch_size, max_length, hidden_dim
output = output.permute(1, 0, 2)
return output, hidden
def get_word_embedding(self, x):
""" """
x_sz = torch.tensor([len(x)])
x_ = torch.tensor(x).unsqueeze(0).to(dtype=torch.long)
# x: 1, max_length, enc_embed_dim
x = self.embedding(x_)
## pack the padded data
# x: max_length, 1, enc_embed_dim -> for pack_pad
x = x.permute(1, 0, 2)
x = nn.utils.rnn.pack_padded_sequence(x, x_sz, enforce_sorted=False) # unpad
# output: packed_size, 1, enc_embed_dim
# hidden: n_layer**num_directions, 1, hidden_dim | if LSTM (h_n, c_n)
output, hidden = self.enc_rnn(
x
) # gru returns hidden state of all timesteps as well as hidden state at last timestep
out_embed = hidden[0].squeeze()
return out_embed
class Decoder(nn.Module):
def __init__(
self,
output_dim,
embed_dim,
hidden_dim,
rnn_type="gru",
layers=1,
use_attention=True,
enc_outstate_dim=None, # enc_directions * enc_hidden_dim
dropout=0,
device="cpu",
):
super(Decoder, self).__init__()
self.output_dim = output_dim # tgt_vocab_sz
self.dec_hidden_dim = hidden_dim
self.dec_embed_dim = embed_dim
self.dec_rnn_type = rnn_type
self.dec_layers = layers
self.use_attention = use_attention
self.device = device
if self.use_attention:
self.enc_outstate_dim = enc_outstate_dim if enc_outstate_dim else hidden_dim
else:
self.enc_outstate_dim = 0
self.embedding = nn.Embedding(self.output_dim, self.dec_embed_dim)
if self.dec_rnn_type == "gru":
self.dec_rnn = nn.GRU(
input_size=self.dec_embed_dim
+ self.enc_outstate_dim, # to concat attention_output
hidden_size=self.dec_hidden_dim, # previous Hidden
num_layers=self.dec_layers,
batch_first=True,
)
elif self.dec_rnn_type == "lstm":
self.dec_rnn = nn.LSTM(
input_size=self.dec_embed_dim
+ self.enc_outstate_dim, # to concat attention_output
hidden_size=self.dec_hidden_dim, # previous Hidden
num_layers=self.dec_layers,
batch_first=True,
)
else:
raise Exception("XlitError: unknown RNN type mentioned")
self.fc = nn.Sequential(
nn.Linear(self.dec_hidden_dim, self.dec_embed_dim),
nn.LeakyReLU(),
# nn.Linear(self.dec_embed_dim, self.dec_embed_dim), nn.LeakyReLU(), # removing to reduce size
nn.Linear(self.dec_embed_dim, self.output_dim),
)
##----- Attention ----------
if self.use_attention:
self.W1 = nn.Linear(self.enc_outstate_dim, self.dec_hidden_dim)
self.W2 = nn.Linear(self.dec_hidden_dim, self.dec_hidden_dim)
self.V = nn.Linear(self.dec_hidden_dim, 1)
def attention(self, x, hidden, enc_output):
"""
x: (batch_size, 1, dec_embed_dim) -> after Embedding
enc_output: batch_size, max_length, enc_hidden_dim *num_directions
hidden: n_layers, batch_size, hidden_size | if LSTM (h_n, c_n)
"""
## perform addition to calculate the score
# hidden_with_time_axis: batch_size, 1, hidden_dim
## hidden_with_time_axis = hidden.permute(1, 0, 2) ## replaced with below 2lines
hidden_with_time_axis = (
torch.sum(hidden, axis=0)
if self.dec_rnn_type != "lstm"
else torch.sum(hidden[0], axis=0)
) # h_n
hidden_with_time_axis = hidden_with_time_axis.unsqueeze(1)
# score: batch_size, max_length, hidden_dim
score = torch.tanh(self.W1(enc_output) + self.W2(hidden_with_time_axis))
# attention_weights: batch_size, max_length, 1
# we get 1 at the last axis because we are applying score to self.V
attention_weights = torch.softmax(self.V(score), dim=1)
# context_vector shape after sum == (batch_size, hidden_dim)
context_vector = attention_weights * enc_output
context_vector = torch.sum(context_vector, dim=1)
# context_vector: batch_size, 1, hidden_dim
context_vector = context_vector.unsqueeze(1)
# attend_out (batch_size, 1, dec_embed_dim + hidden_size)
attend_out = torch.cat((context_vector, x), -1)
return attend_out, attention_weights
def forward(self, x, hidden, enc_output):
"""
x: (batch_size, 1)
enc_output: batch_size, max_length, dec_embed_dim
hidden: n_layer, batch_size, hidden_size | lstm: (h_n, c_n)
"""
if (hidden is None) and (self.use_attention is False):
raise Exception(
"XlitError: No use of a decoder with No attention and No Hidden"
)
batch_sz = x.shape[0]
if hidden is None:
# hidden: n_layers, batch_size, hidden_dim
hid_for_att = torch.zeros(
(self.dec_layers, batch_sz, self.dec_hidden_dim)
).to(self.device)
elif self.dec_rnn_type == "lstm":
hid_for_att = hidden[1] # c_n
# x (batch_size, 1, dec_embed_dim) -> after embedding
x = self.embedding(x)
if self.use_attention:
# x (batch_size, 1, dec_embed_dim + hidden_size) -> after attention
# aw: (batch_size, max_length, 1)
x, aw = self.attention(x, hidden, enc_output)
else:
x, aw = x, 0
# passing the concatenated vector to the GRU
# output: (batch_size, n_layers, hidden_size)
# hidden: n_layers, batch_size, hidden_size | if LSTM (h_n, c_n)
output, hidden = (
self.dec_rnn(x, hidden) if hidden is not None else self.dec_rnn(x)
)
# output :shp: (batch_size * 1, hidden_size)
output = output.view(-1, output.size(2))
# output :shp: (batch_size * 1, output_dim)
output = self.fc(output)
return output, hidden, aw
class Seq2Seq(nn.Module):
"""
Class dependency: Encoder, Decoder
"""
def __init__(
self, encoder, decoder, pass_enc2dec_hid=False, dropout=0, device="cpu"
):
super(Seq2Seq, self).__init__()
self.encoder = encoder
self.decoder = decoder
self.device = device
self.pass_enc2dec_hid = pass_enc2dec_hid
_force_en2dec_hid_conv = False
if self.pass_enc2dec_hid:
assert (
decoder.dec_hidden_dim == encoder.enc_hidden_dim
), "Hidden Dimension of encoder and decoder must be same, or unset `pass_enc2dec_hid`"
if decoder.use_attention:
assert (
decoder.enc_outstate_dim
== encoder.enc_directions * encoder.enc_hidden_dim
), "Set `enc_out_dim` correctly in decoder"
assert (
self.pass_enc2dec_hid or decoder.use_attention
), "No use of a decoder with No attention and No Hidden from Encoder"
self.use_conv_4_enc2dec_hid = False
if (
self.pass_enc2dec_hid
and (encoder.enc_directions * encoder.enc_layers != decoder.dec_layers)
) or _force_en2dec_hid_conv:
if encoder.enc_rnn_type == "lstm" or encoder.enc_rnn_type == "lstm":
raise Exception(
"XlitError: conv for enc2dec_hid not implemented; Change the layer numbers appropriately"
)
self.use_conv_4_enc2dec_hid = True
self.enc_hid_1ax = encoder.enc_directions * encoder.enc_layers
self.dec_hid_1ax = decoder.dec_layers
self.e2d_hidden_conv = nn.Conv1d(self.enc_hid_1ax, self.dec_hid_1ax, 1)
def enc2dec_hidden(self, enc_hidden):
"""
enc_hidden: n_layer, batch_size, hidden_dim*num_directions
TODO: Implement the logic for LSTm bsed model
"""
# hidden: batch_size, enc_layer*num_directions, enc_hidden_dim
hidden = enc_hidden.permute(1, 0, 2).contiguous()
# hidden: batch_size, dec_layers, dec_hidden_dim -> [N,C,Tstep]
hidden = self.e2d_hidden_conv(hidden)
# hidden: dec_layers, batch_size , dec_hidden_dim
hidden_for_dec = hidden.permute(1, 0, 2).contiguous()
return hidden_for_dec
def active_beam_inference(self, src, beam_width=3, max_tgt_sz=50):
"""Search based decoding
src: (sequence_len)
"""
def _avg_score(p_tup):
"""Used for Sorting
TODO: Dividing by length of sequence power alpha as hyperparam
"""
return p_tup[0]
import sys
batch_size = 1
start_tok = src[0]
end_tok = src[-1]
src_sz = torch.tensor([len(src)])
src_ = src.unsqueeze(0)
# enc_output: (batch_size, padded_seq_length, enc_hidden_dim*num_direction)
# enc_hidden: (enc_layers*num_direction, batch_size, hidden_dim)
enc_output, enc_hidden = self.encoder(src_, src_sz)
if self.pass_enc2dec_hid:
# dec_hidden: dec_layers, batch_size , dec_hidden_dim
if self.use_conv_4_enc2dec_hid:
init_dec_hidden = self.enc2dec_hidden(enc_hidden)
else:
init_dec_hidden = enc_hidden
else:
# dec_hidden -> Will be initialized to zeros internally
init_dec_hidden = None
# top_pred[][0] = Σ-log_softmax
# top_pred[][1] = sequence torch.tensor shape: (1)
# top_pred[][2] = dec_hidden
top_pred_list = [(0, start_tok.unsqueeze(0), init_dec_hidden)]
for t in range(max_tgt_sz):
cur_pred_list = []
for p_tup in top_pred_list:
if p_tup[1][-1] == end_tok:
cur_pred_list.append(p_tup)
continue
# dec_hidden: dec_layers, 1, hidden_dim
# dec_output: 1, output_dim
dec_output, dec_hidden, _ = self.decoder(
x=p_tup[1][-1].view(1, 1), # dec_input: (1,1)
hidden=p_tup[2],
enc_output=enc_output,
)
## π{prob} = Σ{log(prob)} -> to prevent diminishing
# dec_output: (1, output_dim)
dec_output = nn.functional.log_softmax(dec_output, dim=1)
# pred_topk.values & pred_topk.indices: (1, beam_width)
pred_topk = torch.topk(dec_output, k=beam_width, dim=1)
for i in range(beam_width):
sig_logsmx_ = p_tup[0] + pred_topk.values[0][i]
# seq_tensor_ : (seq_len)
seq_tensor_ = torch.cat((p_tup[1], pred_topk.indices[0][i].view(1)))
cur_pred_list.append((sig_logsmx_, seq_tensor_, dec_hidden))
cur_pred_list.sort(key=_avg_score, reverse=True) # Maximized order
top_pred_list = cur_pred_list[:beam_width]
# check if end_tok of all topk
end_flags_ = [1 if t[1][-1] == end_tok else 0 for t in top_pred_list]
if beam_width == sum(end_flags_):
break
pred_tnsr_list = [t[1] for t in top_pred_list]
return pred_tnsr_list
##===================== Glyph handlers =======================================
class GlyphStrawboss:
def __init__(self, glyphs="en"):
"""list of letters in a language in unicode
lang: ISO Language code
glyphs: json file with script information
"""
if glyphs == "en":
# Smallcase alone
self.glyphs = [chr(alpha) for alpha in range(97, 122 + 1)]
else:
self.dossier = json.load(open(glyphs, encoding="utf-8"))
self.glyphs = self.dossier["glyphs"]
self.numsym_map = self.dossier["numsym_map"]
self.char2idx = {}
self.idx2char = {}
self._create_index()
def _create_index(self):
self.char2idx["_"] = 0 # pad
self.char2idx["$"] = 1 # start
self.char2idx["#"] = 2 # end
self.char2idx["*"] = 3 # Mask
self.char2idx["'"] = 4 # apostrophe U+0027
self.char2idx["%"] = 5 # unused
self.char2idx["!"] = 6 # unused
# letter to index mapping
for idx, char in enumerate(self.glyphs):
self.char2idx[char] = idx + 7 # +7 token initially
# index to letter mapping
for char, idx in self.char2idx.items():
self.idx2char[idx] = char
def size(self):
return len(self.char2idx)
def word2xlitvec(self, word):
"""Converts given string of gyphs(word) to vector(numpy)
Also adds tokens for start and end
"""
try:
vec = [self.char2idx["$"]] # start token
for i in list(word):
vec.append(self.char2idx[i])
vec.append(self.char2idx["#"]) # end token
vec = np.asarray(vec, dtype=np.int64)
return vec
except Exception as error:
print("XlitError: In word:", word, "Error Char not in Token:", error)
sys.exit()
def xlitvec2word(self, vector):
"""Converts vector(numpy) to string of glyphs(word)"""
char_list = []
for i in vector:
char_list.append(self.idx2char[i])
word = "".join(char_list).replace("$", "").replace("#", "") # remove tokens
word = word.replace("_", "").replace("*", "") # remove tokens
return word
class VocabSanitizer:
def __init__(self, data_file):
"""
data_file: path to file conatining vocabulary list
"""
extension = os.path.splitext(data_file)[-1]
if extension == ".json":
self.vocab_set = set(json.load(open(data_file, encoding="utf-8")))
elif extension == ".csv":
self.vocab_df = pd.read_csv(data_file).set_index("WORD")
self.vocab_set = set(self.vocab_df.index)
else:
print("XlitError: Only Json/CSV file extension supported")
def reposition(self, word_list):
"""Reorder Words in list"""
new_list = []
temp_ = word_list.copy()
for v in word_list:
if v in self.vocab_set:
new_list.append(v)
temp_.remove(v)
new_list.extend(temp_)
return new_list
##=============== INSTANTIATION ================================================
class XlitPiston:
"""
For handling prediction & post-processing of transliteration for a single language
Class dependency: Seq2Seq, GlyphStrawboss, VocabSanitizer
Global Variables: F_DIR
"""
def __init__(
self,
weight_path,
vocab_file,
tglyph_cfg_file,
iglyph_cfg_file="en",
device="cpu",
):
self.device = device
self.in_glyph_obj = GlyphStrawboss(iglyph_cfg_file)
self.tgt_glyph_obj = GlyphStrawboss(glyphs=tglyph_cfg_file)
self.voc_sanity = VocabSanitizer(vocab_file)
self._numsym_set = set(
json.load(open(tglyph_cfg_file, encoding="utf-8"))["numsym_map"].keys()
)
self._inchar_set = set("abcdefghijklmnopqrstuvwxyz")
self._natscr_set = set().union(
self.tgt_glyph_obj.glyphs, sum(self.tgt_glyph_obj.numsym_map.values(), [])
)
## Model Config Static TODO: add defining in json support
input_dim = self.in_glyph_obj.size()
output_dim = self.tgt_glyph_obj.size()
enc_emb_dim = 300
dec_emb_dim = 300
enc_hidden_dim = 512
dec_hidden_dim = 512
rnn_type = "lstm"
enc2dec_hid = True
attention = True
enc_layers = 1
dec_layers = 2
m_dropout = 0
enc_bidirect = True
enc_outstate_dim = enc_hidden_dim * (2 if enc_bidirect else 1)
enc = Encoder(
input_dim=input_dim,
embed_dim=enc_emb_dim,
hidden_dim=enc_hidden_dim,
rnn_type=rnn_type,
layers=enc_layers,
dropout=m_dropout,
device=self.device,
bidirectional=enc_bidirect,
)
dec = Decoder(
output_dim=output_dim,
embed_dim=dec_emb_dim,
hidden_dim=dec_hidden_dim,
rnn_type=rnn_type,
layers=dec_layers,
dropout=m_dropout,
use_attention=attention,
enc_outstate_dim=enc_outstate_dim,
device=self.device,
)
self.model = Seq2Seq(enc, dec, pass_enc2dec_hid=enc2dec_hid, device=self.device)
self.model = self.model.to(self.device)
weights = torch.load(weight_path, map_location=torch.device(self.device))
self.model.load_state_dict(weights)
self.model.eval()
def character_model(self, word, beam_width=1):
in_vec = torch.from_numpy(self.in_glyph_obj.word2xlitvec(word)).to(self.device)
## change to active or passive beam
p_out_list = self.model.active_beam_inference(in_vec, beam_width=beam_width)
p_result = [
self.tgt_glyph_obj.xlitvec2word(out.cpu().numpy()) for out in p_out_list
]
result = self.voc_sanity.reposition(p_result)
# List type
return result
def numsym_model(self, seg):
"""tgt_glyph_obj.numsym_map[x] returns a list object"""
if len(seg) == 1:
return [seg] + self.tgt_glyph_obj.numsym_map[seg]
a = [self.tgt_glyph_obj.numsym_map[n][0] for n in seg]
return [seg] + ["".join(a)]
def _word_segementer(self, sequence):
sequence = sequence.lower()
accepted = set().union(self._numsym_set, self._inchar_set, self._natscr_set)
# sequence = ''.join([i for i in sequence if i in accepted])
segment = []
idx = 0
seq_ = list(sequence)
while len(seq_):
# for Number-Symbol
temp = ""
while len(seq_) and seq_[0] in self._numsym_set:
temp += seq_[0]
seq_.pop(0)
if temp != "":
segment.append(temp)
# for Target Chars
temp = ""
while len(seq_) and seq_[0] in self._natscr_set:
temp += seq_[0]
seq_.pop(0)
if temp != "":
segment.append(temp)
# for Input-Roman Chars
temp = ""
while len(seq_) and seq_[0] in self._inchar_set:
temp += seq_[0]
seq_.pop(0)
if temp != "":
segment.append(temp)
temp = ""
while len(seq_) and seq_[0] not in accepted:
temp += seq_[0]
seq_.pop(0)
if temp != "":
segment.append(temp)
return segment
def inferencer(self, sequence, beam_width=10):
seg = self._word_segementer(sequence[:120])
lit_seg = []
p = 0
while p < len(seg):
if seg[p][0] in self._natscr_set:
lit_seg.append([seg[p]])
p += 1
elif seg[p][0] in self._inchar_set:
lit_seg.append(self.character_model(seg[p], beam_width=beam_width))
p += 1
elif seg[p][0] in self._numsym_set: # num & punc
lit_seg.append(self.numsym_model(seg[p]))
p += 1
else:
lit_seg.append([seg[p]])
p += 1
## IF segment less/equal to 2 then return combinotorial,
## ELSE only return top1 of each result concatenated
if len(lit_seg) == 1:
final_result = lit_seg[0]
elif len(lit_seg) == 2:
final_result = [""]
for seg in lit_seg:
new_result = []
for s in seg:
for f in final_result:
new_result.append(f + s)
final_result = new_result
else:
new_result = []
for seg in lit_seg:
new_result.append(seg[0])
final_result = ["".join(new_result)]
return final_result
from collections.abc import Iterable
from pydload import dload
import zipfile
MODEL_DOWNLOAD_URL_PREFIX = "https://github.com/AI4Bharat/IndianNLP-Transliteration/releases/download/xlit_v0.5.0/"
def is_folder_writable(folder):
try:
os.makedirs(folder, exist_ok=True)
tmp_file = os.path.join(folder, ".write_test")
with open(tmp_file, "w") as f:
f.write("Permission Check")
os.remove(tmp_file)
return True
except:
return False
def is_directory_writable(path):
if os.name == "nt":
return is_folder_writable(path)
return os.access(path, os.W_OK | os.X_OK)
class XlitEngine:
"""
For Managing the top level tasks and applications of transliteration
Global Variables: F_DIR
"""
def __init__(
self, lang2use="all", config_path="translit_models/default_lineup.json"
):
lineup = json.load(open(os.path.join(F_DIR, config_path), encoding="utf-8"))
self.lang_config = {}
if isinstance(lang2use, str):
if lang2use == "all":
self.lang_config = lineup
elif lang2use in lineup:
self.lang_config[lang2use] = lineup[lang2use]
else:
raise Exception(
"XlitError: The entered Langauge code not found. Available are {}".format(
lineup.keys()
)
)
elif isinstance(lang2use, Iterable):
for l in lang2use:
try:
self.lang_config[l] = lineup[l]
except:
print(
"XlitError: Language code {} not found, Skipping...".format(l)
)
else:
raise Exception(
"XlitError: lang2use must be a list of language codes (or) string of single language code"
)
if is_directory_writable(F_DIR):
models_path = os.path.join(F_DIR, "translit_models")
else:
user_home = os.path.expanduser("~")
models_path = os.path.join(user_home, ".AI4Bharat_Xlit_Models")
os.makedirs(models_path, exist_ok=True)
self.download_models(models_path)
self.langs = {}
self.lang_model = {}
for la in self.lang_config:
try:
print("Loading {}...".format(la))
self.lang_model[la] = XlitPiston(
weight_path=os.path.join(
models_path, self.lang_config[la]["weight"]
),
vocab_file=os.path.join(models_path, self.lang_config[la]["vocab"]),
tglyph_cfg_file=os.path.join(
models_path, self.lang_config[la]["script"]
),
iglyph_cfg_file="en",
)
self.langs[la] = self.lang_config[la]["name"]
except Exception as error:
print("XlitError: Failure in loading {} \n".format(la), error)
print(XlitError.loading_err.value)
def download_models(self, models_path):
"""
Download models from GitHub Releases if not exists
"""
for l in self.lang_config:
lang_name = self.lang_config[l]["eng_name"]
lang_model_path = os.path.join(models_path, lang_name)
if not os.path.isdir(lang_model_path):
print("Downloading model for language: %s" % lang_name)
remote_url = MODEL_DOWNLOAD_URL_PREFIX + lang_name + ".zip"
downloaded_zip_path = os.path.join(models_path, lang_name + ".zip")
dload(url=remote_url, save_to_path=downloaded_zip_path, max_time=None)
if not os.path.isfile(downloaded_zip_path):
exit(
f"ERROR: Unable to download model from {remote_url} into {models_path}"
)
with zipfile.ZipFile(downloaded_zip_path, "r") as zip_ref:
zip_ref.extractall(models_path)
if os.path.isdir(lang_model_path):
os.remove(downloaded_zip_path)
else:
exit(
f"ERROR: Unable to find models in {lang_model_path} after download"
)
return
def translit_word(self, eng_word, lang_code="default", topk=7, beam_width=10):
if eng_word == "":
return []
if lang_code in self.langs:
try:
res_list = self.lang_model[lang_code].inferencer(
eng_word, beam_width=beam_width
)
return res_list[:topk]
except Exception as error:
print("XlitError:", traceback.format_exc())
print(XlitError.internal_err.value)
return XlitError.internal_err
elif lang_code == "default":
try:
res_dict = {}
for la in self.lang_model:
res = self.lang_model[la].inferencer(
eng_word, beam_width=beam_width
)
res_dict[la] = res[:topk]
return res_dict
except Exception as error:
print("XlitError:", traceback.format_exc())
print(XlitError.internal_err.value)
return XlitError.internal_err
else:
print("XlitError: Unknown Langauge requested", lang_code)
print(XlitError.lang_err.value)
return XlitError.lang_err
def translit_sentence(self, eng_sentence, lang_code="default", beam_width=10):
if eng_sentence == "":
return []
if lang_code in self.langs:
try:
out_str = ""
for word in eng_sentence.split():
res_ = self.lang_model[lang_code].inferencer(
word, beam_width=beam_width
)
out_str = out_str + res_[0] + " "
return out_str[:-1]
except Exception as error:
print("XlitError:", traceback.format_exc())
print(XlitError.internal_err.value)
return XlitError.internal_err
elif lang_code == "default":
try:
res_dict = {}
for la in self.lang_model:
out_str = ""
for word in eng_sentence.split():
res_ = self.lang_model[la].inferencer(
word, beam_width=beam_width
)
out_str = out_str + res_[0] + " "
res_dict[la] = out_str[:-1]
return res_dict
except Exception as error:
print("XlitError:", traceback.format_exc())
print(XlitError.internal_err.value)
return XlitError.internal_err
else:
print("XlitError: Unknown Langauge requested", lang_code)
print(XlitError.lang_err.value)
return XlitError.lang_err
if __name__ == "__main__":
available_lang = [
"bn",
"gu",
"hi",
"kn",
"gom",
"mai",
"ml",
"mr",
"pa",
"sd",
"si",
"ta",
"te",
"ur",
]
reg = re.compile(r"[a-zA-Z]")
lang = "hi"
engine = XlitEngine(
lang
) # if you don't specify lang code here, this will give results in all langs available
sent = "Hello World! ABCD क्या हाल है आपका?"
words = [
engine.translit_word(word, topk=1)[lang][0] if reg.match(word) else word
for word in sent.split()
] # only transliterated en words, leaves rest as it is
updated_sent = " ".join(words)
print(updated_sent)
# output : हेलो वर्ल्ड! क्या हाल है आपका?
# y = engine.translit_sentence("Hello World !")['hi']
# print(y)