Spaces:
Runtime error
Runtime error
File size: 6,240 Bytes
d449983 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
# vakyansh-tts
Text to Speech for Indic languages
## 1. Installation and Setup for training
Clone repo
Note : for multspeaker glow-tts training use branch [multispeaker](https://github.com/Open-Speech-EkStep/vakyansh-tts/tree/multispeaker)
```
git clone https://github.com/Open-Speech-EkStep/vakyansh-tts
```
Build conda virtual environment
```
cd ./vakyansh-tts
conda create --name <env_name> python=3.7
conda activate <env_name>
pip install -r requirements.txt
```
Install [apex](https://github.com/NVIDIA/apex); commit: 37cdaf4 for Mixed-precision training
Note : used only for glow-tts
```
cd ..
git clone https://github.com/NVIDIA/apex
cd apex
git checkout 37cdaf4
pip install -v --disable-pip-version-check --no-cache-dir ./
cd ../vakyansh-tts
```
Build Monotonic Alignment Search Code (Cython)
Note : used only for glow-tts
```
bash install.sh
```
## 2. Data Resampling
The data format should have a folder containing all the .wav files for glow-tts and a text file containing filenames with their sentences.
Directory structure:
langauge_folder_name
```
language_folder_name
|-- ./wav/*.wav
|-- ./text_file_name.txt
```
The format for text_file_name.txt (Text file is only needed for glow-tts training)
```
( audio1.wav "Sentence1." )
( audio2.wav "Sentence2." )
```
To resample the .wav files to 22050 sample rate, change the following parameters in the vakyansh-tts/scripts/data/resample.sh
```
input_wav_path : absolute path to wav file folder in vakyansh_tts/data/
output_wav_path : absolute path to vakyansh_tts/data/resampled_wav_folder_name
output_sample_rate : 22050 (or any other desired sample rate)
```
To run:
```bash
cd scripts/data/
bash resample.sh
```
## 3. Spectogram Training (glow-tts)
### 3.1 Data Preparation
To prepare the data edit the vakyansh-tts/scripts/glow/prepare_data.sh file and change the following parameters
```
input_text_path : absolute path to vakyansh_tts/data/text_file_name.txt
input_wav_path : absolute path to vakyansh_tts/data/resampled_wav_folder_name
gender : female or male voice
```
To run:
```bash
cd scripts/glow/
bash prepare_data.sh
```
### 3.2 Training glow-tts
To start the spectogram-training edit the vakyansh-tts/scripts/glow/train_glow.sh file and change the following parameter:
```
gender : female or male voice
```
Make sure that the gender is same as that of the prepare_data.sh file
To start the training, run:
```bash
cd scripts/glow/
bash train_glow.sh
```
## 4. Vocoder Training (hifi-gan)
### 4.1 Data Preparation
To prepare the data edit the vakyansh-tts/scripts/hifi/prepare_data.sh file and change the following parameters
```
input_wav_path : absolute path to vakyansh_tts/data/resampled_wav_folder_name
gender : female or male voice
```
To run:
```bash
cd scripts/hifi/
bash prepare_data.sh
```
### 4.2 Training hifi-gan
To start the spectogram-training edit the vakyansh-tts/scripts/hifi/train_hifi.sh file and change the following parameter:
```
gender : female or male voice
```
Make sure that the gender is same as that of the prepare_data.sh file
To start the training, run:
```bash
cd scripts/hifi/
bash train_hifi.sh
```
## 5. Inference
### 5.1 Using Gradio
To use the gradio link edit the following parameters in the vakyansh-tts/scripts/inference/gradio.sh file:
```
gender : female or male voice
device : cpu or cuda
lang : langauge code
```
To run:
```bash
cd scripts/inference/
bash gradio.sh
```
### 5.2 Using fast API
To use the fast api link edit the parameters in the vakyansh-tts/scripts/inference/api.sh file similar to section 5.1
To run:
```bash
cd scripts/inference/
bash api.sh
```
### 5.3 Direct Inference using text
To infer, edit the parameters in the vakyansh-tts/scripts/inference/infer.sh file similar to section 5.1 and set the text to the text variable
To run:
```bash
cd scripts/inference/
bash infer.sh
```
To configure other parameters there is a version that runs the advanced inference as well. Additional Parameters:
```
noise_scale : can vary from 0 to 1 for noise factor
length_scale : can vary from 0 to 2 for changing the speed of the generated audio
transliteration : whether to switch on/off transliteration. 1: ON, 0: OFF
number_conversion : whether to switch on/off number to words conversion. 1: ON, 0: OFF
split_sentences : whether to switch on/off splitting of sentences. 1: ON, 0: OFF
```
To run:
```
cd scripts/inference/
bash advanced_infer.sh
```
### 5.4 Installation of tts_infer package
In tts_infer package, we currently have two components:
1. Transliteration (AI4bharat's open sourced models) (Languages supported: {'hi', 'gu', 'mr', 'bn', 'te', 'ta', 'kn', 'pa', 'gom', 'mai', 'ml', 'sd', 'si', 'ur'} )
2. Num to Word (Languages supported: {'en', 'hi', 'gu', 'mr', 'bn', 'te', 'ta', 'kn', 'or', 'pa'} )
```
git clone https://github.com/Open-Speech-EkStep/vakyansh-tts
cd vakyansh-tts
bash install.sh
python setup.py bdist_wheel
pip install -e .
cd tts_infer
gsutil -m cp -r gs://vakyaansh-open-models/translit_models .
```
Usage: Refer to example file in tts_infer/
```
from tts_infer.tts import TextToMel, MelToWav
from tts_infer.transliterate import XlitEngine
from tts_infer.num_to_word_on_sent import normalize_nums
import re
from scipy.io.wavfile import write
text_to_mel = TextToMel(glow_model_dir='/path/to/glow-tts/checkpoint/dir', device='cuda')
mel_to_wav = MelToWav(hifi_model_dir='/path/to/hifi/checkpoint/dir', device='cuda')
def translit(text, lang):
reg = re.compile(r'[a-zA-Z]')
engine = XlitEngine(lang)
words = [engine.translit_word(word, topk=1)[lang][0] if reg.match(word) else word for word in text.split()]
updated_sent = ' '.join(words)
return updated_sent
def run_tts(text, lang):
text = text.replace('।', '.') # only for hindi models
text_num_to_word = normalize_nums(text, lang) # converting numbers to words in lang
text_num_to_word_and_transliterated = translit(text_num_to_word, lang) # transliterating english words to lang
mel = text_to_mel.generate_mel(text_num_to_word_and_transliterated)
audio, sr = mel_to_wav.generate_wav(mel)
write(filename='temp.wav', rate=sr, data=audio) # for saving wav file, if needed
return (sr, audio)
```
|