Hastika's picture
Update app.py
182c77f verified
import os
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
import gradio as gr
# Load the model and tokenizer from Hugging Face
model_name = "Hastika/codellama-CodeLlama-34b-Instruct-hf" # Adjust if necessary
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# Create a pipeline for text generation
client = pipeline("text-generation", model=model, tokenizer=tokenizer)
# System prompt
system_prompt = {
"role": "system",
"content": "You are a useful assistant. You reply with efficient answers."
}
# Chat function
async def chat_groq(message, history):
messages = [system_prompt]
# Add conversation history to messages
for msg in history:
messages.append({"role": "user", "content": str(msg[0])})
messages.append({"role": "assistant", "content": str(msg[1])})
# Add the new user message
messages.append({"role": "user", "content": str(message)})
# Format the conversation history as a string for the model
conversation = "\n".join([f"{msg['role']}: {msg['content']}" for msg in messages])
# Generate response from the model
response_content = client(conversation, max_length=1024, do_sample=True)[0]['generated_text']
yield response_content
# Gradio interface
with gr.Blocks(theme=gr.themes.Monochrome(), fill_height=True) as demo:
gr.ChatInterface(chat_groq,
clear_btn=None,
undo_btn=None,
retry_btn=None,
)
demo.queue()
demo.launch()