Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,38 +1,33 @@
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
-
import
|
4 |
-
from diffusers import
|
5 |
-
import torch
|
6 |
|
7 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
|
12 |
-
pipe.enable_xformers_memory_efficient_attention()
|
13 |
-
pipe = pipe.to(device)
|
14 |
-
else:
|
15 |
-
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
|
16 |
-
pipe = pipe.to(device)
|
17 |
|
18 |
-
|
19 |
-
MAX_IMAGE_SIZE = 1024
|
20 |
|
21 |
-
|
|
|
|
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
|
|
|
|
29 |
prompt = prompt,
|
30 |
negative_prompt = negative_prompt,
|
31 |
-
guidance_scale = guidance_scale,
|
32 |
num_inference_steps = num_inference_steps,
|
33 |
-
width = width,
|
34 |
height = height,
|
35 |
-
|
36 |
).images[0]
|
37 |
|
38 |
return image
|
@@ -50,19 +45,14 @@ css="""
|
|
50 |
}
|
51 |
"""
|
52 |
|
53 |
-
if torch.cuda.is_available():
|
54 |
-
power_device = "GPU"
|
55 |
-
else:
|
56 |
-
power_device = "CPU"
|
57 |
|
58 |
with gr.Blocks(css=css) as demo:
|
59 |
|
60 |
with gr.Column(elem_id="col-container"):
|
61 |
gr.Markdown(f"""
|
62 |
-
#
|
63 |
-
Currently running on {power_device}.
|
64 |
""")
|
65 |
-
|
66 |
with gr.Row():
|
67 |
|
68 |
prompt = gr.Text(
|
@@ -79,57 +69,21 @@ with gr.Blocks(css=css) as demo:
|
|
79 |
|
80 |
with gr.Accordion("Advanced Settings", open=False):
|
81 |
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
seed = gr.Slider(
|
90 |
-
label="Seed",
|
91 |
-
minimum=0,
|
92 |
-
maximum=MAX_SEED,
|
93 |
-
step=1,
|
94 |
-
value=0,
|
95 |
-
)
|
96 |
-
|
97 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
98 |
-
|
99 |
-
with gr.Row():
|
100 |
-
|
101 |
-
width = gr.Slider(
|
102 |
-
label="Width",
|
103 |
-
minimum=256,
|
104 |
-
maximum=MAX_IMAGE_SIZE,
|
105 |
-
step=32,
|
106 |
-
value=512,
|
107 |
-
)
|
108 |
-
|
109 |
-
height = gr.Slider(
|
110 |
-
label="Height",
|
111 |
-
minimum=256,
|
112 |
-
maximum=MAX_IMAGE_SIZE,
|
113 |
-
step=32,
|
114 |
-
value=512,
|
115 |
-
)
|
116 |
|
117 |
with gr.Row():
|
118 |
|
119 |
-
guidance_scale = gr.Slider(
|
120 |
-
label="Guidance scale",
|
121 |
-
minimum=0.0,
|
122 |
-
maximum=10.0,
|
123 |
-
step=0.1,
|
124 |
-
value=0.0,
|
125 |
-
)
|
126 |
-
|
127 |
num_inference_steps = gr.Slider(
|
128 |
label="Number of inference steps",
|
129 |
minimum=1,
|
130 |
-
maximum=
|
131 |
step=1,
|
132 |
-
value=
|
133 |
)
|
134 |
|
135 |
gr.Examples(
|
@@ -139,7 +93,7 @@ with gr.Blocks(css=css) as demo:
|
|
139 |
|
140 |
run_button.click(
|
141 |
fn = infer,
|
142 |
-
inputs = [prompt,
|
143 |
outputs = [result]
|
144 |
)
|
145 |
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
+
from optimum.intel import OVStableDiffusionPipeline, OVStableDiffusionXLPipeline, OVLatentConsistencyModelPipeline
|
4 |
+
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
|
|
|
5 |
|
|
|
6 |
|
7 |
+
# model_id = "echarlaix/sdxl-turbo-openvino-int8"
|
8 |
+
# model_id = "echarlaix/LCM_Dreamshaper_v7-openvino"
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
+
#safety_checker = StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker")
|
|
|
11 |
|
12 |
+
model_id = "OpenVINO/LCM_Dreamshaper_v7-int8-ov"
|
13 |
+
#pipeline = OVLatentConsistencyModelPipeline.from_pretrained(model_id, compile=False, safety_checker=safety_checker)
|
14 |
+
pipeline = OVLatentConsistencyModelPipeline.from_pretrained(model_id, compile=False)
|
15 |
|
16 |
+
|
17 |
+
batch_size, num_images, height, width = 1, 1, 512, 512
|
18 |
+
pipeline.reshape(batch_size=batch_size, height=height, width=width, num_images_per_prompt=num_images)
|
19 |
+
pipeline.compile()
|
20 |
+
|
21 |
+
def infer(prompt, num_inference_steps):
|
22 |
+
|
23 |
+
image = pipeline(
|
24 |
prompt = prompt,
|
25 |
negative_prompt = negative_prompt,
|
26 |
+
# guidance_scale = guidance_scale,
|
27 |
num_inference_steps = num_inference_steps,
|
28 |
+
width = width,
|
29 |
height = height,
|
30 |
+
num_images_per_prompt=num_images,
|
31 |
).images[0]
|
32 |
|
33 |
return image
|
|
|
45 |
}
|
46 |
"""
|
47 |
|
|
|
|
|
|
|
|
|
48 |
|
49 |
with gr.Blocks(css=css) as demo:
|
50 |
|
51 |
with gr.Column(elem_id="col-container"):
|
52 |
gr.Markdown(f"""
|
53 |
+
# Demo : [Fast LCM](https://huggingface.co/OpenVINO/LCM_Dreamshaper_v7-int8-ov) quantized with NNCF ⚡
|
|
|
54 |
""")
|
55 |
+
|
56 |
with gr.Row():
|
57 |
|
58 |
prompt = gr.Text(
|
|
|
69 |
|
70 |
with gr.Accordion("Advanced Settings", open=False):
|
71 |
|
72 |
+
negative_prompt = gr.Text(
|
73 |
+
label="Negative prompt",
|
74 |
+
max_lines=1,
|
75 |
+
placeholder="Enter a negative prompt",
|
76 |
+
visible=True,
|
77 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
|
79 |
with gr.Row():
|
80 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
num_inference_steps = gr.Slider(
|
82 |
label="Number of inference steps",
|
83 |
minimum=1,
|
84 |
+
maximum=10,
|
85 |
step=1,
|
86 |
+
value=5,
|
87 |
)
|
88 |
|
89 |
gr.Examples(
|
|
|
93 |
|
94 |
run_button.click(
|
95 |
fn = infer,
|
96 |
+
inputs = [prompt, num_inference_steps],
|
97 |
outputs = [result]
|
98 |
)
|
99 |
|