HelloSun commited on
Commit
19cfd55
1 Parent(s): 8c59397

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +30 -76
app.py CHANGED
@@ -1,38 +1,33 @@
1
  import gradio as gr
2
  import numpy as np
3
- import random
4
- from diffusers import DiffusionPipeline
5
- import torch
6
 
7
- device = "cuda" if torch.cuda.is_available() else "cpu"
8
 
9
- if torch.cuda.is_available():
10
- torch.cuda.max_memory_allocated(device=device)
11
- pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
12
- pipe.enable_xformers_memory_efficient_attention()
13
- pipe = pipe.to(device)
14
- else:
15
- pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
16
- pipe = pipe.to(device)
17
 
18
- MAX_SEED = np.iinfo(np.int32).max
19
- MAX_IMAGE_SIZE = 1024
20
 
21
- def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
 
 
22
 
23
- if randomize_seed:
24
- seed = random.randint(0, MAX_SEED)
25
-
26
- generator = torch.Generator().manual_seed(seed)
27
-
28
- image = pipe(
 
 
29
  prompt = prompt,
30
  negative_prompt = negative_prompt,
31
- guidance_scale = guidance_scale,
32
  num_inference_steps = num_inference_steps,
33
- width = width,
34
  height = height,
35
- generator = generator
36
  ).images[0]
37
 
38
  return image
@@ -50,19 +45,14 @@ css="""
50
  }
51
  """
52
 
53
- if torch.cuda.is_available():
54
- power_device = "GPU"
55
- else:
56
- power_device = "CPU"
57
 
58
  with gr.Blocks(css=css) as demo:
59
 
60
  with gr.Column(elem_id="col-container"):
61
  gr.Markdown(f"""
62
- # Text-to-Image Gradio Template
63
- Currently running on {power_device}.
64
  """)
65
-
66
  with gr.Row():
67
 
68
  prompt = gr.Text(
@@ -79,57 +69,21 @@ with gr.Blocks(css=css) as demo:
79
 
80
  with gr.Accordion("Advanced Settings", open=False):
81
 
82
- negative_prompt = gr.Text(
83
- label="Negative prompt",
84
- max_lines=1,
85
- placeholder="Enter a negative prompt",
86
- visible=False,
87
- )
88
-
89
- seed = gr.Slider(
90
- label="Seed",
91
- minimum=0,
92
- maximum=MAX_SEED,
93
- step=1,
94
- value=0,
95
- )
96
-
97
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
98
-
99
- with gr.Row():
100
-
101
- width = gr.Slider(
102
- label="Width",
103
- minimum=256,
104
- maximum=MAX_IMAGE_SIZE,
105
- step=32,
106
- value=512,
107
- )
108
-
109
- height = gr.Slider(
110
- label="Height",
111
- minimum=256,
112
- maximum=MAX_IMAGE_SIZE,
113
- step=32,
114
- value=512,
115
- )
116
 
117
  with gr.Row():
118
 
119
- guidance_scale = gr.Slider(
120
- label="Guidance scale",
121
- minimum=0.0,
122
- maximum=10.0,
123
- step=0.1,
124
- value=0.0,
125
- )
126
-
127
  num_inference_steps = gr.Slider(
128
  label="Number of inference steps",
129
  minimum=1,
130
- maximum=12,
131
  step=1,
132
- value=2,
133
  )
134
 
135
  gr.Examples(
@@ -139,7 +93,7 @@ with gr.Blocks(css=css) as demo:
139
 
140
  run_button.click(
141
  fn = infer,
142
- inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
143
  outputs = [result]
144
  )
145
 
 
1
  import gradio as gr
2
  import numpy as np
3
+ from optimum.intel import OVStableDiffusionPipeline, OVStableDiffusionXLPipeline, OVLatentConsistencyModelPipeline
4
+ from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
 
5
 
 
6
 
7
+ # model_id = "echarlaix/sdxl-turbo-openvino-int8"
8
+ # model_id = "echarlaix/LCM_Dreamshaper_v7-openvino"
 
 
 
 
 
 
9
 
10
+ #safety_checker = StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker")
 
11
 
12
+ model_id = "OpenVINO/LCM_Dreamshaper_v7-int8-ov"
13
+ #pipeline = OVLatentConsistencyModelPipeline.from_pretrained(model_id, compile=False, safety_checker=safety_checker)
14
+ pipeline = OVLatentConsistencyModelPipeline.from_pretrained(model_id, compile=False)
15
 
16
+
17
+ batch_size, num_images, height, width = 1, 1, 512, 512
18
+ pipeline.reshape(batch_size=batch_size, height=height, width=width, num_images_per_prompt=num_images)
19
+ pipeline.compile()
20
+
21
+ def infer(prompt, num_inference_steps):
22
+
23
+ image = pipeline(
24
  prompt = prompt,
25
  negative_prompt = negative_prompt,
26
+ # guidance_scale = guidance_scale,
27
  num_inference_steps = num_inference_steps,
28
+ width = width,
29
  height = height,
30
+ num_images_per_prompt=num_images,
31
  ).images[0]
32
 
33
  return image
 
45
  }
46
  """
47
 
 
 
 
 
48
 
49
  with gr.Blocks(css=css) as demo:
50
 
51
  with gr.Column(elem_id="col-container"):
52
  gr.Markdown(f"""
53
+ # Demo : [Fast LCM](https://huggingface.co/OpenVINO/LCM_Dreamshaper_v7-int8-ov) quantized with NNCF ⚡
 
54
  """)
55
+
56
  with gr.Row():
57
 
58
  prompt = gr.Text(
 
69
 
70
  with gr.Accordion("Advanced Settings", open=False):
71
 
72
+ negative_prompt = gr.Text(
73
+ label="Negative prompt",
74
+ max_lines=1,
75
+ placeholder="Enter a negative prompt",
76
+ visible=True,
77
+ )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78
 
79
  with gr.Row():
80
 
 
 
 
 
 
 
 
 
81
  num_inference_steps = gr.Slider(
82
  label="Number of inference steps",
83
  minimum=1,
84
+ maximum=10,
85
  step=1,
86
+ value=5,
87
  )
88
 
89
  gr.Examples(
 
93
 
94
  run_button.click(
95
  fn = infer,
96
+ inputs = [prompt, num_inference_steps],
97
  outputs = [result]
98
  )
99