import gradio as gr import numpy as np from optimum.intel import OVStableDiffusionPipeline, OVStableDiffusionXLPipeline, OVLatentConsistencyModelPipeline from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker from diffusers import DiffusionPipeline # model_id = "echarlaix/sdxl-turbo-openvino-int8" # model_id = "echarlaix/LCM_Dreamshaper_v7-openvino" #safety_checker = StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker") model_id = "OpenVINO/LCM_Dreamshaper_v7-int8-ov" #pipeline = OVLatentConsistencyModelPipeline.from_pretrained(model_id, compile=False, safety_checker=safety_checker) pipeline = OVLatentConsistencyModelPipeline.from_pretrained(model_id, compile=False) pipeline.load_lora_weights("EvilEngine/easynegative") batch_size, num_images, height, width = 1, 1, 512, 512 pipeline.reshape(batch_size=batch_size, height=height, width=width, num_images_per_prompt=num_images) pipeline.compile() negative_prompt="easynegative" def infer(prompt, num_inference_steps): image = pipeline( prompt = prompt, negative_prompt = negative_prompt, #no negative_prompt keyword in LatentConsistencyPipelineMixin # guidance_scale = guidance_scale, num_inference_steps = num_inference_steps, width = width, height = height, num_images_per_prompt=num_images, ).images[0] return image examples = [ "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", "An astronaut riding a green horse", "A delicious ceviche cheesecake slice", ] css=""" #col-container { margin: 0 auto; max-width: 520px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(f""" # Demo : [Fast LCM](https://huggingface.co/OpenVINO/LCM_Dreamshaper_v7-int8-ov) quantized with NNCF ⚡ """) with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0) result = gr.Image(label="Result", show_label=False) with gr.Accordion("Advanced Settings", open=False): #with gr.Row(): # negative_prompt = gr.Text( # label="Negative prompt", # max_lines=1, # placeholder="Enter a negative prompt", # visible=True, # ) with gr.Row(): num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=10, step=1, value=5, ) gr.Examples( examples = examples, inputs = [prompt] ) run_button.click( fn = infer, inputs = [prompt, num_inference_steps], outputs = [result] ) demo.queue().launch()