Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pandas as pd | |
# 1. Loading the dataset | |
df = pd.read_excel("data/table.xlsx") | |
# 2. Preprocessing the dataset | |
df["Bionic prototype"] = df["Bionic prototype"].str.strip() | |
df["Materials"] = df["Materials"].str.split(";").apply(lambda x: [material.strip() for material in x]) | |
df["Method"] = df["Method"].str.split(";").apply(lambda x: [method.strip() for method in x]) | |
df["Multifunction"] = df["Multifunction"].str.split(";").apply(lambda x: [multifunction.strip() for multifunction in x]) | |
# 3. Saving the processed dataset | |
# df.to_excel("data/filtered_table.xlsx", index=False) | |
# 4. Extracting a unique list for each column | |
bionic_prototype_list = df["Bionic prototype"].unique() | |
method_list = df["Method"].explode().unique() | |
multifunction_list = df["Multifunction"].explode().unique() | |
bionic_prototype_list.sort() | |
method_list.sort() | |
multifunction_list.sort() | |
ordered_multifunction_list = ["Antifogging", "Self-cleaning", "Antireflective", "Antibacterial", "Anti-icing", | |
"Antiwetting", "Large FOV", "Fast motion detection", "Structural color", | |
"Droplet directional migration", "Anti-drag", "Water collection", | |
"Self-propelled actuator"] | |
other_multifunction_list = [x for x in multifunction_list if x not in ordered_multifunction_list] | |
ordered_multifunction_list.extend(other_multifunction_list) | |
def show_res_link(row_idx): | |
res_link = df.iloc[row_idx]['Res link'] | |
st.sidebar.info(f'Resource Link: {res_link}') | |
def show_bionic_prototype_content(row_idx): | |
bionic_prototype = df.iloc[row_idx]['Bionic prototype'] | |
st.sidebar.info(f'Bionic prototype is: {bionic_prototype}') | |
with st.sidebar: | |
st.slider( | |
label="Search results limit", | |
min_value=1, | |
max_value=50, | |
value=20, | |
step=1, | |
key="limit", | |
help="Limit the number of search results", | |
) | |
st.multiselect( | |
label="Display columns", | |
options=["Bionic prototype", "Multifunction", "Method", "Materials", "Res link"], | |
default=["Bionic prototype", "Multifunction", "Method", "Materials", "Res link"], | |
help="Select columns to display in the search results", | |
key="display_columns", | |
) | |
st.title("Bionic Path Selection") | |
st.multiselect( | |
label="Multifunction", | |
options=ordered_multifunction_list, | |
default=[], | |
help="Select the multifunction to display in the search results", | |
placeholder="Select the multifunction to display in the search results", | |
key="multifunction_option" | |
) | |
st.session_state.disabled = False if len(st.session_state.multifunction_option) > 0 else True | |
left_col, right_col = st.columns(2) | |
with left_col: | |
st.selectbox( | |
label="Bionic prototype", | |
options=bionic_prototype_list, | |
help="Select the bionic prototype to display in the search results", | |
placeholder="Select the bionic prototype to display in the search results", | |
index=None, | |
key="bionic_prototype_option", | |
disabled=st.session_state.disabled | |
) | |
with right_col: | |
st.multiselect( | |
label="Method", | |
options=method_list, | |
default=[], | |
help="Select the method to display in the search results", | |
placeholder="Select the method to display in the search results", | |
key="method_option", | |
disabled=st.session_state.disabled | |
) | |
search = st.button("Search") | |
if search: | |
multifunction_option = st.session_state.multifunction_option | |
bionic_prototype_option = st.session_state.bionic_prototype_option | |
method_option = st.session_state.method_option | |
# Filter the multifunction column | |
filtered_df = df[ | |
df["Multifunction"].apply(lambda x: all(multifunction in x for multifunction in multifunction_option))] | |
# Filter the bionic prototype column | |
filtered_df = filtered_df[filtered_df["Bionic prototype"] == bionic_prototype_option] \ | |
if (bionic_prototype_option is not None and not st.session_state.disabled and not filtered_df.empty) \ | |
else filtered_df | |
# Filter the method column | |
filtered_df = filtered_df[filtered_df["Method"].apply(lambda x: any(method in x for method in method_option))] \ | |
if (len(method_option) > 0 and not st.session_state.disabled and not filtered_df.empty) \ | |
else filtered_df | |
# Reset the index | |
filtered_df = filtered_df.reset_index(drop=True) | |
st.dataframe( | |
filtered_df[st.session_state.display_columns].head(st.session_state.limit), | |
column_config={ | |
"Res link": st.column_config.LinkColumn( | |
"Resource", display_text=None | |
) | |
} | |
) | |