Henrychur's picture
Update app.py
dee6b79 verified
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from typing import List, Literal, Sequence, TypedDict
Role = Literal["system", "user", "assistant"]
class Message(TypedDict):
role: Role
content: str
Dialog = Sequence[Message]
class ChatFormat:
def encode_header(self, message: Message) -> str:
return f"{message['role']}\n\n"
def encode_message(self, message: Message) -> str:
header = self.encode_header(message)
return f"{header}{message['content'].strip()}"
def encode_dialog_prompt(self, dialog: Dialog) -> str:
dialog_str = ""
for message in dialog:
dialog_str += self.encode_message(message)
dialog_str += self.encode_header({"role": "assistant", "content": ""})
return dialog_str
class MedS_Llama3:
def __init__(self, model_path: str):
# 加载模型到CPU
self.model = AutoModelForCausalLM.from_pretrained(
model_path,
device_map='cpu', # 指定加载到CPU
torch_dtype=torch.float32 # 使用标准的float32精度
)
self.model.config.pad_token_id = self.model.config.eos_token_id = 128009
self.tokenizer = AutoTokenizer.from_pretrained(
model_path,
model_max_length=2048,
padding_side="right"
)
self.tokenizer.pad_token = self.tokenizer.eos_token
self.model.eval()
self.prompt_engine = ChatFormat()
print('Model and tokenizer loaded on CPU!')
def __build_inputs_for_llama3(self, query: str, instruction: str) -> str:
input_ss = [
{"role": 'system', "content": instruction},
{"role": 'user', "content": query}
]
return self.prompt_engine.encode_dialog_prompt(input_ss)
def chat(self, query: str, instruction: str, max_output_tokens: int) -> str:
formatted_query = f"Input:\n{query}\nOutput:\n"
input_sentence = self.__build_inputs_for_llama3(formatted_query, instruction)
input_tokens = self.tokenizer(
input_sentence,
return_tensors="pt",
padding=True,
truncation=True
)
output = self.model.generate(
**input_tokens,
max_new_tokens=max_output_tokens,
eos_token_id=128009
)
generated_text = self.tokenizer.decode(
output[0][input_tokens['input_ids'].shape[1]:],
skip_special_tokens=True
)
return generated_text.strip()
# 实例化模型
model_path = "Henrychur/MMedS-Llama-3-8B" # 确保这里是模型的正确路径
chat_model = MedS_Llama3(model_path)
# 定义 Gradio 接口中使用的响应函数
def respond(message, system_message, max_output_tokens):
# 每次对话结束后清空历史,只使用当前输入和系统指令
response = chat_model.chat(query=message, instruction=system_message, max_output_tokens=max_output_tokens)
yield response
# 设置 Gradio 聊天界面
demo = gr.Interface(
fn=respond,
inputs=[
gr.Textbox(value="What is the treatment for diabetes?", label="Your Input"),
gr.Textbox(value="If you are a doctor, please perform clinical consulting with the patient.", label="System message"),
gr.Slider(minimum=1, maximum=1024, value=512, step=1, label="Max Output Tokens")
],
outputs="text"
)
if __name__ == "__main__":
demo.launch()