File size: 6,122 Bytes
1ef6ffb
 
 
 
 
 
 
 
 
 
 
cb4cc22
1ef6ffb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb4cc22
 
 
1ef6ffb
 
 
cb4cc22
 
 
 
 
 
 
1ef6ffb
 
 
cb4cc22
 
 
 
 
 
 
 
 
 
 
 
 
 
1ef6ffb
 
 
cb4cc22
 
 
 
 
1ef6ffb
cb4cc22
 
 
 
 
 
 
1ef6ffb
cb4cc22
 
 
 
 
 
 
 
 
 
1ef6ffb
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import gradio as gr
import numpy as np
import io
from pydub import AudioSegment
import requests
from dataclasses import dataclass, field
from threading import Lock
import base64
import uuid
import json
import sseclient
import os

@dataclass
class AppState:
    stream: np.ndarray | None = None
    sampling_rate: int = 0
    conversation: list = field(default_factory=list)
    api_key: str = os.getenv("API_KEY", "")
    output_format: str = "mp3"
    url: str = "https://audio.herm.studio/v1/chat/completions"

# Global lock for thread safety
state_lock = Lock()

def process_audio(audio: tuple, state: AppState):
    if state.stream is None:
        state.stream = audio[1]
        state.sampling_rate = audio[0]
    else:
        state.stream = np.concatenate((state.stream, audio[1]))
    return state

def update_or_append_conversation(conversation, id, role, new_content):
    for entry in conversation:
        if entry["id"] == id and entry["role"] == role:
            entry["content"] = new_content
            return
    conversation.append({"id": id, "role": role, "content": new_content})

def generate_response_and_audio(audio_bytes: bytes, state: AppState):
    if not state.api_key:
        raise gr.Error("Please enter a valid API key first.")

    headers = {
       "X-API-Key": state.api_key,
       "Content-Type": "application/json"
    }
    
    audio_data = base64.b64encode(audio_bytes).decode()
    old_messages = [{"role": item["role"], "content": item["content"]} for item in state.conversation]
    old_messages.append({"role": "user", "content": [{"type": "audio", "data": audio_data}]})

    data = {
        "messages": old_messages,
        "stream": True,
        "max_tokens": 256
    }

    try:
        response = requests.post(state.url, headers=headers, json=data, stream=True)
        response.raise_for_status()

        if response.status_code != 200:
            raise gr.Error(f"API returned status code {response.status_code}")

        client = sseclient.SSEClient(response)

        full_response = ""
        asr_result = ""
        audio_chunks = []
        id = uuid.uuid4()

        for event in client.events():
            if event.data == "[DONE]":
                break
            
            try:
                chunk = json.loads(event.data)
            except json.JSONDecodeError:
                continue

            if 'choices' not in chunk or not chunk['choices']:
                continue
            
            choice = chunk['choices'][0]
            
            if 'delta' in choice and 'content' in choice['delta']:
                content = choice['delta'].get('content')
                if content is not None:
                    full_response += content
                    yield id, full_response, asr_result, None, state
            
            if 'asr_results' in choice:
                asr_result = "".join(choice['asr_results'])
                yield id, full_response, asr_result, None, state
            
            if 'audio' in choice:
                if choice['audio'] is not None:
                    audio_chunks.extend(choice['audio'])

        if audio_chunks:
            try:
                final_audio = b"".join([base64.b64decode(a) for a in audio_chunks])
                yield id, full_response, asr_result, final_audio, state
            except TypeError:
                pass

        if not full_response and not asr_result and not audio_chunks:
            raise gr.Error("No valid response received from the API")

    except requests.exceptions.RequestException as e:
        raise gr.Error(f"Request failed: {str(e)}")
    except Exception as e:
        raise gr.Error(f"Error during audio streaming: {str(e)}")

def response(state: AppState):
    if state.stream is None or len(state.stream) == 0:
        return None, None, state

    audio_buffer = io.BytesIO()
    segment = AudioSegment(
        state.stream.tobytes(),
        frame_rate=state.sampling_rate,
        sample_width=state.stream.dtype.itemsize,
        channels=(1 if len(state.stream.shape) == 1 else state.stream.shape[1]),
    )
    segment.export(audio_buffer, format="wav")

    generator = generate_response_and_audio(audio_buffer.getvalue(), state)

    for id, text, asr, audio, updated_state in generator:
        state = updated_state
        if asr:
            update_or_append_conversation(state.conversation, id, "user", asr)
        if text:
            update_or_append_conversation(state.conversation, id, "assistant", text)
        chatbot_output = state.conversation
        yield chatbot_output, audio, state

    state.stream = None

def initial_setup(state):
    if not state.api_key:
        raise gr.Error("API key not found in environment variables. Please set the API_KEY environment variable.")
    return gr.update(value="The API key used is supported by Herm studio", visible=True)

with gr.Blocks() as demo:
    gr.Markdown("# LLM Voice Mode")
    
    api_key_status = gr.Textbox(
        show_label=False,
        container=False,
        interactive=False,
        visible=True
    )

    with gr.Blocks():
        with gr.Row():
            input_audio = gr.Audio(
                label="Input Audio",
                sources="microphone",
                type="numpy"
            )
            output_audio = gr.Audio(
                label="Output Audio",
                autoplay=True,
                streaming=True
            )
        chatbot = gr.Chatbot(
            label="Conversation",
            type="messages"
        )

    state = gr.State(AppState())

    demo.load(
        fn=initial_setup,
        inputs=state,
        outputs=api_key_status
    )

    input_audio.stream(
        fn=process_audio,
        inputs=[input_audio, state],
        outputs=[state],
        stream_every=0.25,
        time_limit=60
    )

    respond = input_audio.stop_recording(
        fn=response,
        inputs=[state],
        outputs=[chatbot, output_audio, state]
    )
    respond.then(
        fn=lambda s: s.conversation,
        inputs=[state],
        outputs=[chatbot]
    )

demo.launch()