Spaces:
Runtime error
Runtime error
File size: 5,087 Bytes
e94e369 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
from streamlit_webrtc import webrtc_streamer
import numpy as np
import streamlit as st
import numpy as np
import av
import threading
import multiprocessing
from typing import List, Optional, Tuple
from pandas import DataFrame
import numpy as np
import pandas as pd
import streamlit as st
import torch
from torch import Tensor
from transformers import AutoFeatureExtractor, TimesformerForVideoClassification
from utils.frame_rate import FrameRate
np.random.seed(0)
st.set_page_config(
page_title="TimeSFormer",
page_icon="🧊",
layout="wide",
initial_sidebar_state="expanded",
menu_items={
"Get Help": "https://www.extremelycoolapp.com/help",
"Report a bug": "https://www.extremelycoolapp.com/bug",
"About": "# This is a header. This is an *extremely* cool app!",
},
)
@st.cache_resource
# @st.experimental_singleton
def load_model(model_name: str):
if "base-finetuned-k400" in model_name or "base-finetuned-k600" in model_name:
feature_extractor = AutoFeatureExtractor.from_pretrained(
"MCG-NJU/videomae-base-finetuned-kinetics"
)
else:
feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
model = TimesformerForVideoClassification.from_pretrained(model_name)
return feature_extractor, model
lock = threading.Lock()
rtc_configuration = {
"iceServers": [
{
"urls": "turn:relay1.expressturn.com:3478",
"username": "efBRTY571ATWBRMP36",
"credential": "pGcX1BPH5fMmZJc5",
},
# {
# "urls": [
# "stun:stun1.l.google.com:19302",
# "stun:stun2.l.google.com:19302",
# "stun:stun3.l.google.com:19302",
# "stun:stun4.l.google.com:19302",
# ]
# },
],
}
def inference():
if not img_container.ready:
return
inputs = feature_extractor(list(img_container.imgs), return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
logits: Tensor = outputs.logits
# model predicts one of the 400 Kinetics-400 classes
max_index = logits.argmax(-1).item()
predicted_label = model.config.id2label[max_index]
img_container.frame_rate.label = f"{predicted_label}_{logits[0][max_index]:.2f}%"
TOP_K = 12
# logits = np.squeeze(logits)
logits = logits.squeeze().numpy()
indices = np.argsort(logits)[::-1][:TOP_K]
values = logits[indices]
results: List[Tuple[str, float]] = []
for index, value in zip(indices, values):
predicted_label = model.config.id2label[index]
# print(f"Label: {predicted_label} - {value:.2f}%")
results.append((predicted_label, value))
img_container.rs = pd.DataFrame(results, columns=("Label", "Confidence"))
class ImgContainer:
def __init__(self, frames_per_video: int = 8) -> None:
self.img: Optional[np.ndarray] = None # raw image
self.frame_rate: FrameRate = FrameRate()
self.imgs: List[np.ndarray] = []
self.frame_rate.reset()
self.frames_per_video = frames_per_video
self.rs: Optional[DataFrame] = None
def add_frame(self, frame: np.ndarray):
if len(img_container.imgs) >= frames_per_video:
self.imgs.pop(0)
self.imgs.append(frame)
@property
def ready(self):
return len(img_container.imgs) == self.frames_per_video
def video_frame_callback(frame: av.VideoFrame) -> av.VideoFrame:
img = frame.to_ndarray(format="bgr24")
with lock:
img_container.img = img
img_container.frame_rate.count()
img_container.add_frame(img)
inference()
img = img_container.frame_rate.show_fps(img)
return av.VideoFrame.from_ndarray(img, format="bgr24")
def get_frames_per_video(model_name: str) -> int:
if "base-finetuned" in model_name:
return 8
elif "hr-finetuned" in model_name:
return 16
else:
return 96
st.title("TimeSFormer")
with st.expander("INTRODUCTION"):
st.text(
f"""Streamlit demo for TimeSFormer.
Number of CPU(s): {multiprocessing.cpu_count()}
"""
)
model_name = st.selectbox(
"model_name",
(
"facebook/timesformer-base-finetuned-k400",
"facebook/timesformer-base-finetuned-k600",
"facebook/timesformer-base-finetuned-ssv2",
"facebook/timesformer-hr-finetuned-k600",
"facebook/timesformer-hr-finetuned-k400",
"facebook/timesformer-hr-finetuned-ssv2",
"fcakyon/timesformer-large-finetuned-k400",
"fcakyon/timesformer-large-finetuned-k600",
),
)
feature_extractor, model = load_model(model_name)
frames_per_video = get_frames_per_video(model_name)
st.info(f"Frames per video: {frames_per_video}")
img_container = ImgContainer(frames_per_video)
ctx = st.session_state.ctx = webrtc_streamer(
key="snapshot",
video_frame_callback=video_frame_callback,
rtc_configuration=rtc_configuration,
)
if img_container.rs is not None:
st.dataframe(img_container.rs)
|