control-lora-v3 / preprocessor.py
HighCWu's picture
make the app runable
7a1ec93
import gc
import numpy as np
import PIL.Image
import torch
from controlnet_aux import (
CannyDetector,
ContentShuffleDetector,
HEDdetector,
LineartAnimeDetector,
LineartDetector,
MidasDetector,
MLSDdetector,
NormalBaeDetector,
OpenposeDetector,
PidiNetDetector,
)
from controlnet_aux.util import HWC3
from cv_utils import resize_image
from depth_estimator import DepthEstimator
from image_segmentor import ImageSegmentor, ImageSegmentorOneFormer
class Preprocessor:
MODEL_ID = "lllyasviel/Annotators"
def __init__(self):
self.model = None
self.models = {}
self.name = ""
def load(self, name: str) -> None:
if name == self.name:
return
if name in self.models:
self.name = name
self.model = self.models[name]
return
if name == "HED":
self.model = HEDdetector.from_pretrained(self.MODEL_ID)
elif name == "Midas":
self.model = MidasDetector.from_pretrained(self.MODEL_ID)
elif name == "MLSD":
self.model = MLSDdetector.from_pretrained(self.MODEL_ID)
elif name == "Openpose":
self.model = OpenposeDetector.from_pretrained(self.MODEL_ID)
elif name == "PidiNet":
self.model = PidiNetDetector.from_pretrained(self.MODEL_ID)
elif name == "NormalBae":
self.model = NormalBaeDetector.from_pretrained(self.MODEL_ID)
elif name == "Lineart":
self.model = LineartDetector.from_pretrained(self.MODEL_ID)
elif name == "LineartAnime":
self.model = LineartAnimeDetector.from_pretrained(self.MODEL_ID)
elif name == "Canny":
self.model = CannyDetector()
elif name == "ContentShuffle":
self.model = ContentShuffleDetector()
elif name == "DPT":
self.model = DepthEstimator()
elif name == "UPerNet":
self.model = ImageSegmentor()
elif name == "OneFormer":
self.model = ImageSegmentorOneFormer()
else:
raise ValueError
# if torch.cuda.is_available():
# torch.cuda.empty_cache()
# gc.collect()
self.name = name
self.models[name] = self.model
def __call__(self, image: PIL.Image.Image, **kwargs) -> PIL.Image.Image:
if self.name == "Canny":
if "detect_resolution" in kwargs:
detect_resolution = kwargs.pop("detect_resolution")
image = np.array(image)
image = HWC3(image)
image = resize_image(image, resolution=detect_resolution)
image = self.model(image, **kwargs)
return PIL.Image.fromarray(image)
elif self.name == "Midas":
detect_resolution = kwargs.pop("detect_resolution", 512)
image_resolution = kwargs.pop("image_resolution", 512)
image = np.array(image)
image = HWC3(image)
image = resize_image(image, resolution=detect_resolution)
image = self.model(image, **kwargs)
if isinstance(image, tuple):
image = image[-1][...,::-1] # normal old
image = HWC3(image)
image = resize_image(image, resolution=image_resolution)
return PIL.Image.fromarray(image)
else:
return self.model(image, **kwargs)