Spaces:
Running
Running
import gc | |
import numpy as np | |
import PIL.Image | |
import torch | |
from controlnet_aux import ( | |
CannyDetector, | |
ContentShuffleDetector, | |
HEDdetector, | |
LineartAnimeDetector, | |
LineartDetector, | |
MidasDetector, | |
MLSDdetector, | |
NormalBaeDetector, | |
OpenposeDetector, | |
PidiNetDetector, | |
) | |
from controlnet_aux.util import HWC3 | |
from cv_utils import resize_image | |
from depth_estimator import DepthEstimator | |
from image_segmentor import ImageSegmentor, ImageSegmentorOneFormer | |
class Preprocessor: | |
MODEL_ID = "lllyasviel/Annotators" | |
def __init__(self): | |
self.model = None | |
self.models = {} | |
self.name = "" | |
def load(self, name: str) -> None: | |
if name == self.name: | |
return | |
if name in self.models: | |
self.name = name | |
self.model = self.models[name] | |
return | |
if name == "HED": | |
self.model = HEDdetector.from_pretrained(self.MODEL_ID) | |
elif name == "Midas": | |
self.model = MidasDetector.from_pretrained(self.MODEL_ID) | |
elif name == "MLSD": | |
self.model = MLSDdetector.from_pretrained(self.MODEL_ID) | |
elif name == "Openpose": | |
self.model = OpenposeDetector.from_pretrained(self.MODEL_ID) | |
elif name == "PidiNet": | |
self.model = PidiNetDetector.from_pretrained(self.MODEL_ID) | |
elif name == "NormalBae": | |
self.model = NormalBaeDetector.from_pretrained(self.MODEL_ID) | |
elif name == "Lineart": | |
self.model = LineartDetector.from_pretrained(self.MODEL_ID) | |
elif name == "LineartAnime": | |
self.model = LineartAnimeDetector.from_pretrained(self.MODEL_ID) | |
elif name == "Canny": | |
self.model = CannyDetector() | |
elif name == "ContentShuffle": | |
self.model = ContentShuffleDetector() | |
elif name == "DPT": | |
self.model = DepthEstimator() | |
elif name == "UPerNet": | |
self.model = ImageSegmentor() | |
elif name == "OneFormer": | |
self.model = ImageSegmentorOneFormer() | |
else: | |
raise ValueError | |
# if torch.cuda.is_available(): | |
# torch.cuda.empty_cache() | |
# gc.collect() | |
self.name = name | |
self.models[name] = self.model | |
def __call__(self, image: PIL.Image.Image, **kwargs) -> PIL.Image.Image: | |
if self.name == "Canny": | |
if "detect_resolution" in kwargs: | |
detect_resolution = kwargs.pop("detect_resolution") | |
image = np.array(image) | |
image = HWC3(image) | |
image = resize_image(image, resolution=detect_resolution) | |
image = self.model(image, **kwargs) | |
return PIL.Image.fromarray(image) | |
elif self.name == "Midas": | |
detect_resolution = kwargs.pop("detect_resolution", 512) | |
image_resolution = kwargs.pop("image_resolution", 512) | |
image = np.array(image) | |
image = HWC3(image) | |
image = resize_image(image, resolution=detect_resolution) | |
image = self.model(image, **kwargs) | |
if isinstance(image, tuple): | |
image = image[-1][...,::-1] # normal old | |
image = HWC3(image) | |
image = resize_image(image, resolution=image_resolution) | |
return PIL.Image.fromarray(image) | |
else: | |
return self.model(image, **kwargs) | |