Spaces:
Running
Running
init control lora v3.
Browse files- README.md +6 -8
- app.py +34 -23
- app_tile.py +87 -0
- model.py +65 -42
- pipeline.py +1374 -0
- preprocessor.py +2 -1
- requirements.txt +3 -13
- settings.py +2 -2
- unet.py +299 -0
README.md
CHANGED
@@ -1,15 +1,13 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
-
sdk_version:
|
8 |
-
python_version: 3.10.11
|
9 |
app_file: app.py
|
10 |
-
pinned:
|
11 |
license: mit
|
12 |
-
suggested_hardware: t4-medium
|
13 |
---
|
14 |
|
15 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: Control Lora V3
|
3 |
+
emoji: 🖼
|
4 |
+
colorFrom: purple
|
5 |
+
colorTo: red
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 4.26.0
|
|
|
8 |
app_file: app.py
|
9 |
+
pinned: true
|
10 |
license: mit
|
|
|
11 |
---
|
12 |
|
13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
CHANGED
@@ -2,9 +2,13 @@
|
|
2 |
|
3 |
from __future__ import annotations
|
4 |
|
|
|
5 |
import gradio as gr
|
6 |
import torch
|
7 |
|
|
|
|
|
|
|
8 |
from app_canny import create_demo as create_demo_canny
|
9 |
from app_depth import create_demo as create_demo_depth
|
10 |
from app_ip2p import create_demo as create_demo_ip2p
|
@@ -17,13 +21,18 @@ from app_scribble_interactive import create_demo as create_demo_scribble_interac
|
|
17 |
from app_segmentation import create_demo as create_demo_segmentation
|
18 |
from app_shuffle import create_demo as create_demo_shuffle
|
19 |
from app_softedge import create_demo as create_demo_softedge
|
|
|
20 |
from model import Model
|
21 |
from settings import ALLOW_CHANGING_BASE_MODEL, DEFAULT_MODEL_ID, SHOW_DUPLICATE_BUTTON
|
22 |
|
23 |
-
DESCRIPTION = "
|
|
|
24 |
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
27 |
|
28 |
model = Model(base_model_id=DEFAULT_MODEL_ID, task_name="Canny")
|
29 |
|
@@ -37,29 +46,31 @@ with gr.Blocks(css="style.css") as demo:
|
|
37 |
|
38 |
with gr.Tabs():
|
39 |
with gr.TabItem("Canny"):
|
40 |
-
create_demo_canny(model.process_canny)
|
41 |
-
with gr.TabItem("MLSD"):
|
42 |
-
|
43 |
-
with gr.TabItem("Scribble"):
|
44 |
-
|
45 |
-
with gr.TabItem("Scribble Interactive"):
|
46 |
-
|
47 |
-
with gr.TabItem("SoftEdge"):
|
48 |
-
|
49 |
with gr.TabItem("OpenPose"):
|
50 |
-
create_demo_openpose(model.process_openpose)
|
51 |
with gr.TabItem("Segmentation"):
|
52 |
-
create_demo_segmentation(model.process_segmentation)
|
53 |
with gr.TabItem("Depth"):
|
54 |
-
create_demo_depth(model.process_depth)
|
55 |
with gr.TabItem("Normal map"):
|
56 |
-
create_demo_normal(model.process_normal)
|
57 |
-
with gr.TabItem("Lineart"):
|
58 |
-
|
59 |
-
with gr.TabItem("Content Shuffle"):
|
60 |
-
|
61 |
-
with gr.TabItem("Instruct Pix2Pix"):
|
62 |
-
|
|
|
|
|
63 |
|
64 |
with gr.Accordion(label="Base model", open=False):
|
65 |
with gr.Row():
|
@@ -72,7 +83,7 @@ with gr.Blocks(css="style.css") as demo:
|
|
72 |
new_base_model_id = gr.Text(
|
73 |
label="New base model",
|
74 |
max_lines=1,
|
75 |
-
placeholder="
|
76 |
info="The base model must be compatible with Stable Diffusion v1.5.",
|
77 |
interactive=ALLOW_CHANGING_BASE_MODEL,
|
78 |
)
|
|
|
2 |
|
3 |
from __future__ import annotations
|
4 |
|
5 |
+
import spaces
|
6 |
import gradio as gr
|
7 |
import torch
|
8 |
|
9 |
+
import PIL.Image
|
10 |
+
import numpy as np
|
11 |
+
|
12 |
from app_canny import create_demo as create_demo_canny
|
13 |
from app_depth import create_demo as create_demo_depth
|
14 |
from app_ip2p import create_demo as create_demo_ip2p
|
|
|
21 |
from app_segmentation import create_demo as create_demo_segmentation
|
22 |
from app_shuffle import create_demo as create_demo_shuffle
|
23 |
from app_softedge import create_demo as create_demo_softedge
|
24 |
+
from app_tile import create_demo as create_demo_tile
|
25 |
from model import Model
|
26 |
from settings import ALLOW_CHANGING_BASE_MODEL, DEFAULT_MODEL_ID, SHOW_DUPLICATE_BUTTON
|
27 |
|
28 |
+
DESCRIPTION = r"""
|
29 |
+
# ControlLoRA Version 3: LoRA Is All You Need to Control the Spatial Information of Stable Diffusion
|
30 |
|
31 |
+
<center>
|
32 |
+
<a href="https://huggingface.co/HighCWu/control-lora-v3">[Models]</a>
|
33 |
+
<a href="https://github.com/HighCWu/control-lora-v3">[Github]</a>
|
34 |
+
</center>
|
35 |
+
"""
|
36 |
|
37 |
model = Model(base_model_id=DEFAULT_MODEL_ID, task_name="Canny")
|
38 |
|
|
|
46 |
|
47 |
with gr.Tabs():
|
48 |
with gr.TabItem("Canny"):
|
49 |
+
create_demo_canny(spaces.GPU(model.process_canny))
|
50 |
+
# with gr.TabItem("MLSD"):
|
51 |
+
# create_demo_mlsd(spaces.GPU(model.process_mlsd))
|
52 |
+
# with gr.TabItem("Scribble"):
|
53 |
+
# create_demo_scribble(spaces.GPU(model.process_scribble))
|
54 |
+
# with gr.TabItem("Scribble Interactive"):
|
55 |
+
# create_demo_scribble_interactive(spaces.GPU(model.process_scribble_interactive))
|
56 |
+
# with gr.TabItem("SoftEdge"):
|
57 |
+
# create_demo_softedge(spaces.GPU(model.process_softedge))
|
58 |
with gr.TabItem("OpenPose"):
|
59 |
+
create_demo_openpose(spaces.GPU(model.process_openpose))
|
60 |
with gr.TabItem("Segmentation"):
|
61 |
+
create_demo_segmentation(spaces.GPU(model.process_segmentation))
|
62 |
with gr.TabItem("Depth"):
|
63 |
+
create_demo_depth(spaces.GPU(model.process_depth))
|
64 |
with gr.TabItem("Normal map"):
|
65 |
+
create_demo_normal(spaces.GPU(model.process_normal))
|
66 |
+
# with gr.TabItem("Lineart"):
|
67 |
+
# create_demo_lineart(spaces.GPU(model.process_lineart))
|
68 |
+
# with gr.TabItem("Content Shuffle"):
|
69 |
+
# create_demo_shuffle(spaces.GPU(model.process_shuffle))
|
70 |
+
# with gr.TabItem("Instruct Pix2Pix"):
|
71 |
+
# create_demo_ip2p(spaces.GPU(model.process_ip2p))
|
72 |
+
with gr.TabItem("Tile"):
|
73 |
+
create_demo_tile(spaces.GPU(model.process_tile))
|
74 |
|
75 |
with gr.Accordion(label="Base model", open=False):
|
76 |
with gr.Row():
|
|
|
83 |
new_base_model_id = gr.Text(
|
84 |
label="New base model",
|
85 |
max_lines=1,
|
86 |
+
placeholder="SG161222/Realistic_Vision_V4.0_noVAE",
|
87 |
info="The base model must be compatible with Stable Diffusion v1.5.",
|
88 |
interactive=ALLOW_CHANGING_BASE_MODEL,
|
89 |
)
|
app_tile.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
+
|
5 |
+
from settings import (
|
6 |
+
DEFAULT_IMAGE_RESOLUTION,
|
7 |
+
DEFAULT_NUM_IMAGES,
|
8 |
+
MAX_IMAGE_RESOLUTION,
|
9 |
+
MAX_NUM_IMAGES,
|
10 |
+
MAX_SEED,
|
11 |
+
)
|
12 |
+
from utils import randomize_seed_fn
|
13 |
+
|
14 |
+
|
15 |
+
def create_demo(process):
|
16 |
+
with gr.Blocks() as demo:
|
17 |
+
with gr.Row():
|
18 |
+
with gr.Column():
|
19 |
+
image = gr.Image()
|
20 |
+
prompt = gr.Textbox(label="Prompt")
|
21 |
+
run_button = gr.Button("Run")
|
22 |
+
with gr.Accordion("Advanced options", open=False):
|
23 |
+
num_samples = gr.Slider(
|
24 |
+
label="Number of images", minimum=1, maximum=MAX_NUM_IMAGES, value=DEFAULT_NUM_IMAGES, step=1
|
25 |
+
)
|
26 |
+
image_resolution = gr.Slider(
|
27 |
+
label="Image resolution",
|
28 |
+
minimum=256,
|
29 |
+
maximum=MAX_IMAGE_RESOLUTION,
|
30 |
+
value=DEFAULT_IMAGE_RESOLUTION,
|
31 |
+
step=256,
|
32 |
+
)
|
33 |
+
num_steps = gr.Slider(label="Number of steps", minimum=1, maximum=100, value=20, step=1)
|
34 |
+
guidance_scale = gr.Slider(label="Guidance scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1)
|
35 |
+
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
|
36 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
37 |
+
a_prompt = gr.Textbox(label="Additional prompt", value="best quality, extremely detailed")
|
38 |
+
n_prompt = gr.Textbox(
|
39 |
+
label="Negative prompt",
|
40 |
+
value="longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality",
|
41 |
+
)
|
42 |
+
with gr.Column():
|
43 |
+
result = gr.Gallery(label="Output", show_label=False, columns=2, object_fit="scale-down")
|
44 |
+
inputs = [
|
45 |
+
image,
|
46 |
+
prompt,
|
47 |
+
a_prompt,
|
48 |
+
n_prompt,
|
49 |
+
num_samples,
|
50 |
+
image_resolution,
|
51 |
+
num_steps,
|
52 |
+
guidance_scale,
|
53 |
+
seed,
|
54 |
+
]
|
55 |
+
prompt.submit(
|
56 |
+
fn=randomize_seed_fn,
|
57 |
+
inputs=[seed, randomize_seed],
|
58 |
+
outputs=seed,
|
59 |
+
queue=False,
|
60 |
+
api_name=False,
|
61 |
+
).then(
|
62 |
+
fn=process,
|
63 |
+
inputs=inputs,
|
64 |
+
outputs=result,
|
65 |
+
api_name=False,
|
66 |
+
)
|
67 |
+
run_button.click(
|
68 |
+
fn=randomize_seed_fn,
|
69 |
+
inputs=[seed, randomize_seed],
|
70 |
+
outputs=seed,
|
71 |
+
queue=False,
|
72 |
+
api_name=False,
|
73 |
+
).then(
|
74 |
+
fn=process,
|
75 |
+
inputs=inputs,
|
76 |
+
outputs=result,
|
77 |
+
api_name="tile",
|
78 |
+
)
|
79 |
+
return demo
|
80 |
+
|
81 |
+
|
82 |
+
if __name__ == "__main__":
|
83 |
+
from model import Model
|
84 |
+
|
85 |
+
model = Model(task_name="tile")
|
86 |
+
demo = create_demo(model.process_tile)
|
87 |
+
demo.queue().launch()
|
model.py
CHANGED
@@ -7,59 +7,54 @@ import PIL.Image
|
|
7 |
import torch
|
8 |
from controlnet_aux.util import HWC3
|
9 |
from diffusers import (
|
10 |
-
ControlNetModel,
|
11 |
-
DiffusionPipeline,
|
12 |
-
StableDiffusionControlNetPipeline,
|
13 |
UniPCMultistepScheduler,
|
14 |
)
|
|
|
|
|
15 |
|
16 |
from cv_utils import resize_image
|
17 |
from preprocessor import Preprocessor
|
18 |
from settings import MAX_IMAGE_RESOLUTION, MAX_NUM_IMAGES
|
|
|
19 |
|
20 |
-
CONTROLNET_MODEL_IDS = {
|
21 |
-
"Openpose": "lllyasviel/control_v11p_sd15_openpose",
|
22 |
-
"Canny": "lllyasviel/control_v11p_sd15_canny",
|
23 |
-
"MLSD": "lllyasviel/control_v11p_sd15_mlsd",
|
24 |
-
"scribble": "lllyasviel/control_v11p_sd15_scribble",
|
25 |
-
"softedge": "lllyasviel/control_v11p_sd15_softedge",
|
26 |
-
"segmentation": "lllyasviel/control_v11p_sd15_seg",
|
27 |
-
"depth": "lllyasviel/control_v11f1p_sd15_depth",
|
28 |
-
"NormalBae": "lllyasviel/control_v11p_sd15_normalbae",
|
29 |
-
"lineart": "lllyasviel/control_v11p_sd15_lineart",
|
30 |
-
"lineart_anime": "lllyasviel/control_v11p_sd15s2_lineart_anime",
|
31 |
-
"shuffle": "lllyasviel/control_v11e_sd15_shuffle",
|
32 |
-
"ip2p": "lllyasviel/control_v11e_sd15_ip2p",
|
33 |
-
"inpaint": "lllyasviel/control_v11e_sd15_inpaint",
|
34 |
-
}
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
|
42 |
class Model:
|
43 |
-
def __init__(self, base_model_id: str = "
|
44 |
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
45 |
self.base_model_id = ""
|
46 |
self.task_name = ""
|
47 |
-
self.pipe = self.load_pipe(base_model_id, task_name)
|
48 |
self.preprocessor = Preprocessor()
|
49 |
|
50 |
-
def load_pipe(self, base_model_id: str, task_name) ->
|
51 |
if (
|
52 |
base_model_id == self.base_model_id
|
53 |
-
and task_name == self.task_name
|
54 |
and hasattr(self, "pipe")
|
55 |
and self.pipe is not None
|
56 |
):
|
|
|
|
|
57 |
return self.pipe
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
|
|
|
|
62 |
)
|
|
|
|
|
63 |
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
64 |
if self.device.type == "cuda":
|
65 |
pipe.enable_xformers_memory_efficient_attention()
|
@@ -74,7 +69,8 @@ class Model:
|
|
74 |
if not base_model_id or base_model_id == self.base_model_id:
|
75 |
return self.base_model_id
|
76 |
del self.pipe
|
77 |
-
|
|
|
78 |
gc.collect()
|
79 |
try:
|
80 |
self.pipe = self.load_pipe(base_model_id, self.task_name)
|
@@ -85,16 +81,8 @@ class Model:
|
|
85 |
def load_controlnet_weight(self, task_name: str) -> None:
|
86 |
if task_name == self.task_name:
|
87 |
return
|
88 |
-
|
89 |
-
|
90 |
-
torch.cuda.empty_cache()
|
91 |
-
gc.collect()
|
92 |
-
model_id = CONTROLNET_MODEL_IDS[task_name]
|
93 |
-
controlnet = ControlNetModel.from_pretrained(model_id, torch_dtype=torch.float16)
|
94 |
-
controlnet.to(self.device)
|
95 |
-
torch.cuda.empty_cache()
|
96 |
-
gc.collect()
|
97 |
-
self.pipe.controlnet = controlnet
|
98 |
self.task_name = task_name
|
99 |
|
100 |
def get_prompt(self, prompt: str, additional_prompt: str) -> str:
|
@@ -104,7 +92,7 @@ class Model:
|
|
104 |
prompt = f"{prompt}, {additional_prompt}"
|
105 |
return prompt
|
106 |
|
107 |
-
@torch.autocast("cuda")
|
108 |
def run_pipe(
|
109 |
self,
|
110 |
prompt: str,
|
@@ -672,3 +660,38 @@ class Model:
|
|
672 |
seed=seed,
|
673 |
)
|
674 |
return [control_image] + results
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
import torch
|
8 |
from controlnet_aux.util import HWC3
|
9 |
from diffusers import (
|
|
|
|
|
|
|
10 |
UniPCMultistepScheduler,
|
11 |
)
|
12 |
+
from unet import UNet2DConditionModelEx
|
13 |
+
from pipeline import StableDiffusionControlLoraV3Pipeline
|
14 |
|
15 |
from cv_utils import resize_image
|
16 |
from preprocessor import Preprocessor
|
17 |
from settings import MAX_IMAGE_RESOLUTION, MAX_NUM_IMAGES
|
18 |
+
from collections import OrderedDict
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
+
CONTROL_LORA_V3_MODEL_IDS = OrderedDict([
|
22 |
+
("Openpose", "sd-control-lora-v3-pose-half-rank128-conv_in-rank128"),
|
23 |
+
("Canny", "sd-control-lora-v3-canny-half_skip_attn-rank16-conv_in-rank64"),
|
24 |
+
("segmentation", "sd-control-lora-v3-segmentation-half_skip_attn-rank128-conv_in-rank128"),
|
25 |
+
("depth", "lllyasviel/control_v11f1p_sd15_depth"),
|
26 |
+
("NormalBae", "sd-control-lora-v3-normal-half-rank32-conv_in-rank128"),
|
27 |
+
("depth", "sd-control-lora-v3-depth-half-rank8-conv_in-rank128"),
|
28 |
+
("Tile", "sd-control-lora-v3-tile-half_skip_attn-rank16-conv_in-rank64"),
|
29 |
+
])
|
30 |
|
31 |
|
32 |
class Model:
|
33 |
+
def __init__(self, base_model_id: str = "SG161222/Realistic_Vision_V4.0_noVAE", task_name: str = "Canny"):
|
34 |
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
35 |
self.base_model_id = ""
|
36 |
self.task_name = ""
|
37 |
+
self.pipe: StableDiffusionControlLoraV3Pipeline = self.load_pipe(base_model_id, task_name)
|
38 |
self.preprocessor = Preprocessor()
|
39 |
|
40 |
+
def load_pipe(self, base_model_id: str, task_name) -> StableDiffusionControlLoraV3Pipeline:
|
41 |
if (
|
42 |
base_model_id == self.base_model_id
|
|
|
43 |
and hasattr(self, "pipe")
|
44 |
and self.pipe is not None
|
45 |
):
|
46 |
+
unet: UNet2DConditionModelEx = self.pipe.unet
|
47 |
+
unet.activate_adapters([task_name])
|
48 |
return self.pipe
|
49 |
+
unet: UNet2DConditionModelEx = UNet2DConditionModelEx.from_pretrained(
|
50 |
+
base_model_id, subfolder="unet", torch_dtype=torch.float16
|
51 |
+
)
|
52 |
+
unet.add_extra_conditions(["Placeholder"])
|
53 |
+
pipe: StableDiffusionControlLoraV3Pipeline = StableDiffusionControlLoraV3Pipeline.from_pretrained(
|
54 |
+
base_model_id, safety_checker=None, unet=unet, torch_dtype=torch.float16
|
55 |
)
|
56 |
+
for _task_name, subfolder in CONTROL_LORA_V3_MODEL_IDS.items():
|
57 |
+
pipe.load_lora_weights("HighCWu/control-lora-v3", adapter_name=_task_name, subfolder=subfolder)
|
58 |
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
59 |
if self.device.type == "cuda":
|
60 |
pipe.enable_xformers_memory_efficient_attention()
|
|
|
69 |
if not base_model_id or base_model_id == self.base_model_id:
|
70 |
return self.base_model_id
|
71 |
del self.pipe
|
72 |
+
if self.device.type == "cuda":
|
73 |
+
torch.cuda.empty_cache()
|
74 |
gc.collect()
|
75 |
try:
|
76 |
self.pipe = self.load_pipe(base_model_id, self.task_name)
|
|
|
81 |
def load_controlnet_weight(self, task_name: str) -> None:
|
82 |
if task_name == self.task_name:
|
83 |
return
|
84 |
+
unet: UNet2DConditionModelEx = self.pipe.unet
|
85 |
+
unet.activate_adapters([task_name])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
self.task_name = task_name
|
87 |
|
88 |
def get_prompt(self, prompt: str, additional_prompt: str) -> str:
|
|
|
92 |
prompt = f"{prompt}, {additional_prompt}"
|
93 |
return prompt
|
94 |
|
95 |
+
# @torch.autocast("cuda")
|
96 |
def run_pipe(
|
97 |
self,
|
98 |
prompt: str,
|
|
|
660 |
seed=seed,
|
661 |
)
|
662 |
return [control_image] + results
|
663 |
+
|
664 |
+
@torch.inference_mode()
|
665 |
+
def process_tile(
|
666 |
+
self,
|
667 |
+
image: np.ndarray,
|
668 |
+
prompt: str,
|
669 |
+
additional_prompt: str,
|
670 |
+
negative_prompt: str,
|
671 |
+
num_images: int,
|
672 |
+
image_resolution: int,
|
673 |
+
num_steps: int,
|
674 |
+
guidance_scale: float,
|
675 |
+
seed: int,
|
676 |
+
) -> list[PIL.Image.Image]:
|
677 |
+
if image is None:
|
678 |
+
raise ValueError
|
679 |
+
if image_resolution > MAX_IMAGE_RESOLUTION:
|
680 |
+
raise ValueError
|
681 |
+
if num_images > MAX_NUM_IMAGES:
|
682 |
+
raise ValueError
|
683 |
+
|
684 |
+
image = HWC3(image)
|
685 |
+
image = resize_image(image, resolution=image_resolution)
|
686 |
+
control_image = PIL.Image.fromarray(image)
|
687 |
+
self.load_controlnet_weight("Tile")
|
688 |
+
results = self.run_pipe(
|
689 |
+
prompt=self.get_prompt(prompt, additional_prompt),
|
690 |
+
negative_prompt=negative_prompt,
|
691 |
+
control_image=control_image,
|
692 |
+
num_images=num_images,
|
693 |
+
num_steps=num_steps,
|
694 |
+
guidance_scale=guidance_scale,
|
695 |
+
seed=seed,
|
696 |
+
)
|
697 |
+
return [control_image] + results
|
pipeline.py
ADDED
@@ -0,0 +1,1374 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import inspect
|
2 |
+
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import PIL.Image
|
6 |
+
import torch
|
7 |
+
import torch.nn.functional as F
|
8 |
+
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
|
9 |
+
|
10 |
+
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
|
11 |
+
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
12 |
+
from diffusers.loaders import FromSingleFileMixin, IPAdapterMixin, LoraLoaderMixin, TextualInversionLoaderMixin
|
13 |
+
from diffusers.models import AutoencoderKL, ImageProjection
|
14 |
+
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
15 |
+
from diffusers.schedulers import KarrasDiffusionSchedulers
|
16 |
+
from diffusers.utils import (
|
17 |
+
USE_PEFT_BACKEND,
|
18 |
+
deprecate,
|
19 |
+
logging,
|
20 |
+
replace_example_docstring,
|
21 |
+
scale_lora_layers,
|
22 |
+
unscale_lora_layers,
|
23 |
+
)
|
24 |
+
from diffusers.utils.torch_utils import is_compiled_module, is_torch_version, randn_tensor
|
25 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
|
26 |
+
from diffusers.pipelines.stable_diffusion.pipeline_output import StableDiffusionPipelineOutput
|
27 |
+
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
28 |
+
from model import UNet2DConditionModelEx
|
29 |
+
|
30 |
+
|
31 |
+
from huggingface_hub.utils import validate_hf_hub_args
|
32 |
+
|
33 |
+
|
34 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
35 |
+
|
36 |
+
|
37 |
+
EXAMPLE_DOC_STRING = """
|
38 |
+
Examples:
|
39 |
+
```py
|
40 |
+
>>> # !pip install opencv-python transformers accelerate
|
41 |
+
>>> from diffusers import UniPCMultistepScheduler
|
42 |
+
>>> from diffusers.utils import load_image
|
43 |
+
>>> from model import UNet2DConditionModelEx
|
44 |
+
>>> from pipeline import StableDiffusionControlLoraV3Pipeline
|
45 |
+
>>> import numpy as np
|
46 |
+
>>> import torch
|
47 |
+
|
48 |
+
>>> import cv2
|
49 |
+
>>> from PIL import Image
|
50 |
+
|
51 |
+
>>> # download an image
|
52 |
+
>>> image = load_image(
|
53 |
+
... "https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/input_image_vermeer.png"
|
54 |
+
... )
|
55 |
+
>>> image = np.array(image)
|
56 |
+
|
57 |
+
>>> # get canny image
|
58 |
+
>>> image = cv2.Canny(image, 100, 200)
|
59 |
+
>>> image = image[:, :, None]
|
60 |
+
>>> image = np.concatenate([image, image, image], axis=2)
|
61 |
+
>>> canny_image = Image.fromarray(image)
|
62 |
+
|
63 |
+
>>> # load stable diffusion v1-5 and control-lora-v3
|
64 |
+
>>> unet: UNet2DConditionModelEx = UNet2DConditionModelEx.from_pretrained(
|
65 |
+
... "runwayml/stable-diffusion-v1-5", subfolder="unet", torch_dtype=torch.float16
|
66 |
+
... )
|
67 |
+
>>> unet = unet.add_extra_conditions(["canny"])
|
68 |
+
>>> pipe = StableDiffusionControlLoraV3Pipeline.from_pretrained(
|
69 |
+
... "runwayml/stable-diffusion-v1-5", unet=unet, torch_dtype=torch.float16
|
70 |
+
... )
|
71 |
+
>>> # load attention processors
|
72 |
+
>>> pipe.load_lora_weights("HighCWu/sd-control-lora-v3-canny")
|
73 |
+
|
74 |
+
>>> # speed up diffusion process with faster scheduler and memory optimization
|
75 |
+
>>> pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
76 |
+
>>> # remove following line if xformers is not installed
|
77 |
+
>>> pipe.enable_xformers_memory_efficient_attention()
|
78 |
+
|
79 |
+
>>> pipe.enable_model_cpu_offload()
|
80 |
+
|
81 |
+
>>> # generate image
|
82 |
+
>>> generator = torch.manual_seed(0)
|
83 |
+
>>> image = pipe(
|
84 |
+
... "futuristic-looking woman", num_inference_steps=20, generator=generator, image=canny_image
|
85 |
+
... ).images[0]
|
86 |
+
```
|
87 |
+
"""
|
88 |
+
|
89 |
+
|
90 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
91 |
+
def retrieve_timesteps(
|
92 |
+
scheduler,
|
93 |
+
num_inference_steps: Optional[int] = None,
|
94 |
+
device: Optional[Union[str, torch.device]] = None,
|
95 |
+
timesteps: Optional[List[int]] = None,
|
96 |
+
sigmas: Optional[List[float]] = None,
|
97 |
+
**kwargs,
|
98 |
+
):
|
99 |
+
"""
|
100 |
+
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
101 |
+
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
102 |
+
|
103 |
+
Args:
|
104 |
+
scheduler (`SchedulerMixin`):
|
105 |
+
The scheduler to get timesteps from.
|
106 |
+
num_inference_steps (`int`):
|
107 |
+
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
108 |
+
must be `None`.
|
109 |
+
device (`str` or `torch.device`, *optional*):
|
110 |
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
111 |
+
timesteps (`List[int]`, *optional*):
|
112 |
+
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
113 |
+
`num_inference_steps` and `sigmas` must be `None`.
|
114 |
+
sigmas (`List[float]`, *optional*):
|
115 |
+
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
116 |
+
`num_inference_steps` and `timesteps` must be `None`.
|
117 |
+
|
118 |
+
Returns:
|
119 |
+
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
120 |
+
second element is the number of inference steps.
|
121 |
+
"""
|
122 |
+
if timesteps is not None and sigmas is not None:
|
123 |
+
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
124 |
+
if timesteps is not None:
|
125 |
+
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
126 |
+
if not accepts_timesteps:
|
127 |
+
raise ValueError(
|
128 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
129 |
+
f" timestep schedules. Please check whether you are using the correct scheduler."
|
130 |
+
)
|
131 |
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
132 |
+
timesteps = scheduler.timesteps
|
133 |
+
num_inference_steps = len(timesteps)
|
134 |
+
elif sigmas is not None:
|
135 |
+
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
136 |
+
if not accept_sigmas:
|
137 |
+
raise ValueError(
|
138 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
139 |
+
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
140 |
+
)
|
141 |
+
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
142 |
+
timesteps = scheduler.timesteps
|
143 |
+
num_inference_steps = len(timesteps)
|
144 |
+
else:
|
145 |
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
146 |
+
timesteps = scheduler.timesteps
|
147 |
+
return timesteps, num_inference_steps
|
148 |
+
|
149 |
+
|
150 |
+
class StableDiffusionControlLoraV3Pipeline(
|
151 |
+
DiffusionPipeline,
|
152 |
+
StableDiffusionMixin,
|
153 |
+
TextualInversionLoaderMixin,
|
154 |
+
LoraLoaderMixin,
|
155 |
+
IPAdapterMixin,
|
156 |
+
FromSingleFileMixin,
|
157 |
+
):
|
158 |
+
r"""
|
159 |
+
Pipeline for text-to-image generation using Stable Diffusion with extra condition guidance.
|
160 |
+
|
161 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
|
162 |
+
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
|
163 |
+
|
164 |
+
The pipeline also inherits the following loading methods:
|
165 |
+
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
166 |
+
- [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights
|
167 |
+
- [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights
|
168 |
+
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
|
169 |
+
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
|
170 |
+
|
171 |
+
Args:
|
172 |
+
vae ([`AutoencoderKL`]):
|
173 |
+
Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
|
174 |
+
text_encoder ([`~transformers.CLIPTextModel`]):
|
175 |
+
Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
|
176 |
+
tokenizer ([`~transformers.CLIPTokenizer`]):
|
177 |
+
A `CLIPTokenizer` to tokenize text.
|
178 |
+
unet ([`UNet2DConditionModelEx`]):
|
179 |
+
A `UNet2DConditionModelEx` to denoise the encoded image latents with extra conditions.
|
180 |
+
scheduler ([`SchedulerMixin`]):
|
181 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
182 |
+
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
183 |
+
safety_checker ([`StableDiffusionSafetyChecker`]):
|
184 |
+
Classification module that estimates whether generated images could be considered offensive or harmful.
|
185 |
+
Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
|
186 |
+
about a model's potential harms.
|
187 |
+
feature_extractor ([`~transformers.CLIPImageProcessor`]):
|
188 |
+
A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
|
189 |
+
"""
|
190 |
+
|
191 |
+
model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae"
|
192 |
+
_optional_components = ["safety_checker", "feature_extractor", "image_encoder"]
|
193 |
+
_exclude_from_cpu_offload = ["safety_checker"]
|
194 |
+
_callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
|
195 |
+
|
196 |
+
def __init__(
|
197 |
+
self,
|
198 |
+
vae: AutoencoderKL,
|
199 |
+
text_encoder: CLIPTextModel,
|
200 |
+
tokenizer: CLIPTokenizer,
|
201 |
+
unet: UNet2DConditionModelEx,
|
202 |
+
scheduler: KarrasDiffusionSchedulers,
|
203 |
+
safety_checker: StableDiffusionSafetyChecker,
|
204 |
+
feature_extractor: CLIPImageProcessor,
|
205 |
+
image_encoder: CLIPVisionModelWithProjection = None,
|
206 |
+
requires_safety_checker: bool = True,
|
207 |
+
):
|
208 |
+
super().__init__()
|
209 |
+
|
210 |
+
if safety_checker is None and requires_safety_checker:
|
211 |
+
logger.warning(
|
212 |
+
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
|
213 |
+
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
|
214 |
+
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
|
215 |
+
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
|
216 |
+
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
|
217 |
+
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
|
218 |
+
)
|
219 |
+
|
220 |
+
if safety_checker is not None and feature_extractor is None:
|
221 |
+
raise ValueError(
|
222 |
+
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
|
223 |
+
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
|
224 |
+
)
|
225 |
+
|
226 |
+
self.register_modules(
|
227 |
+
vae=vae,
|
228 |
+
text_encoder=text_encoder,
|
229 |
+
tokenizer=tokenizer,
|
230 |
+
unet=unet,
|
231 |
+
scheduler=scheduler,
|
232 |
+
safety_checker=safety_checker,
|
233 |
+
feature_extractor=feature_extractor,
|
234 |
+
image_encoder=image_encoder,
|
235 |
+
)
|
236 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
237 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True)
|
238 |
+
self.register_to_config(requires_safety_checker=requires_safety_checker)
|
239 |
+
|
240 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt
|
241 |
+
def _encode_prompt(
|
242 |
+
self,
|
243 |
+
prompt,
|
244 |
+
device,
|
245 |
+
num_images_per_prompt,
|
246 |
+
do_classifier_free_guidance,
|
247 |
+
negative_prompt=None,
|
248 |
+
prompt_embeds: Optional[torch.Tensor] = None,
|
249 |
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
250 |
+
lora_scale: Optional[float] = None,
|
251 |
+
**kwargs,
|
252 |
+
):
|
253 |
+
deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple."
|
254 |
+
deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False)
|
255 |
+
|
256 |
+
prompt_embeds_tuple = self.encode_prompt(
|
257 |
+
prompt=prompt,
|
258 |
+
device=device,
|
259 |
+
num_images_per_prompt=num_images_per_prompt,
|
260 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
261 |
+
negative_prompt=negative_prompt,
|
262 |
+
prompt_embeds=prompt_embeds,
|
263 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
264 |
+
lora_scale=lora_scale,
|
265 |
+
**kwargs,
|
266 |
+
)
|
267 |
+
|
268 |
+
# concatenate for backwards comp
|
269 |
+
prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]])
|
270 |
+
|
271 |
+
return prompt_embeds
|
272 |
+
|
273 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt
|
274 |
+
def encode_prompt(
|
275 |
+
self,
|
276 |
+
prompt,
|
277 |
+
device,
|
278 |
+
num_images_per_prompt,
|
279 |
+
do_classifier_free_guidance,
|
280 |
+
negative_prompt=None,
|
281 |
+
prompt_embeds: Optional[torch.Tensor] = None,
|
282 |
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
283 |
+
lora_scale: Optional[float] = None,
|
284 |
+
clip_skip: Optional[int] = None,
|
285 |
+
):
|
286 |
+
r"""
|
287 |
+
Encodes the prompt into text encoder hidden states.
|
288 |
+
|
289 |
+
Args:
|
290 |
+
prompt (`str` or `List[str]`, *optional*):
|
291 |
+
prompt to be encoded
|
292 |
+
device: (`torch.device`):
|
293 |
+
torch device
|
294 |
+
num_images_per_prompt (`int`):
|
295 |
+
number of images that should be generated per prompt
|
296 |
+
do_classifier_free_guidance (`bool`):
|
297 |
+
whether to use classifier free guidance or not
|
298 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
299 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
300 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
301 |
+
less than `1`).
|
302 |
+
prompt_embeds (`torch.Tensor`, *optional*):
|
303 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
304 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
305 |
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
306 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
307 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
308 |
+
argument.
|
309 |
+
lora_scale (`float`, *optional*):
|
310 |
+
A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
311 |
+
clip_skip (`int`, *optional*):
|
312 |
+
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
313 |
+
the output of the pre-final layer will be used for computing the prompt embeddings.
|
314 |
+
"""
|
315 |
+
# set lora scale so that monkey patched LoRA
|
316 |
+
# function of text encoder can correctly access it
|
317 |
+
if lora_scale is not None and isinstance(self, LoraLoaderMixin):
|
318 |
+
self._lora_scale = lora_scale
|
319 |
+
|
320 |
+
# dynamically adjust the LoRA scale
|
321 |
+
if not USE_PEFT_BACKEND:
|
322 |
+
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
|
323 |
+
else:
|
324 |
+
scale_lora_layers(self.text_encoder, lora_scale)
|
325 |
+
|
326 |
+
if prompt is not None and isinstance(prompt, str):
|
327 |
+
batch_size = 1
|
328 |
+
elif prompt is not None and isinstance(prompt, list):
|
329 |
+
batch_size = len(prompt)
|
330 |
+
else:
|
331 |
+
batch_size = prompt_embeds.shape[0]
|
332 |
+
|
333 |
+
if prompt_embeds is None:
|
334 |
+
# textual inversion: process multi-vector tokens if necessary
|
335 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
336 |
+
prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
|
337 |
+
|
338 |
+
text_inputs = self.tokenizer(
|
339 |
+
prompt,
|
340 |
+
padding="max_length",
|
341 |
+
max_length=self.tokenizer.model_max_length,
|
342 |
+
truncation=True,
|
343 |
+
return_tensors="pt",
|
344 |
+
)
|
345 |
+
text_input_ids = text_inputs.input_ids
|
346 |
+
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
347 |
+
|
348 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
349 |
+
text_input_ids, untruncated_ids
|
350 |
+
):
|
351 |
+
removed_text = self.tokenizer.batch_decode(
|
352 |
+
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
|
353 |
+
)
|
354 |
+
logger.warning(
|
355 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
356 |
+
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
357 |
+
)
|
358 |
+
|
359 |
+
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
360 |
+
attention_mask = text_inputs.attention_mask.to(device)
|
361 |
+
else:
|
362 |
+
attention_mask = None
|
363 |
+
|
364 |
+
if clip_skip is None:
|
365 |
+
prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask)
|
366 |
+
prompt_embeds = prompt_embeds[0]
|
367 |
+
else:
|
368 |
+
prompt_embeds = self.text_encoder(
|
369 |
+
text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True
|
370 |
+
)
|
371 |
+
# Access the `hidden_states` first, that contains a tuple of
|
372 |
+
# all the hidden states from the encoder layers. Then index into
|
373 |
+
# the tuple to access the hidden states from the desired layer.
|
374 |
+
prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)]
|
375 |
+
# We also need to apply the final LayerNorm here to not mess with the
|
376 |
+
# representations. The `last_hidden_states` that we typically use for
|
377 |
+
# obtaining the final prompt representations passes through the LayerNorm
|
378 |
+
# layer.
|
379 |
+
prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds)
|
380 |
+
|
381 |
+
if self.text_encoder is not None:
|
382 |
+
prompt_embeds_dtype = self.text_encoder.dtype
|
383 |
+
elif self.unet is not None:
|
384 |
+
prompt_embeds_dtype = self.unet.dtype
|
385 |
+
else:
|
386 |
+
prompt_embeds_dtype = prompt_embeds.dtype
|
387 |
+
|
388 |
+
prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
|
389 |
+
|
390 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
391 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
392 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
393 |
+
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
394 |
+
|
395 |
+
# get unconditional embeddings for classifier free guidance
|
396 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
397 |
+
uncond_tokens: List[str]
|
398 |
+
if negative_prompt is None:
|
399 |
+
uncond_tokens = [""] * batch_size
|
400 |
+
elif prompt is not None and type(prompt) is not type(negative_prompt):
|
401 |
+
raise TypeError(
|
402 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
403 |
+
f" {type(prompt)}."
|
404 |
+
)
|
405 |
+
elif isinstance(negative_prompt, str):
|
406 |
+
uncond_tokens = [negative_prompt]
|
407 |
+
elif batch_size != len(negative_prompt):
|
408 |
+
raise ValueError(
|
409 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
410 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
411 |
+
" the batch size of `prompt`."
|
412 |
+
)
|
413 |
+
else:
|
414 |
+
uncond_tokens = negative_prompt
|
415 |
+
|
416 |
+
# textual inversion: process multi-vector tokens if necessary
|
417 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
418 |
+
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)
|
419 |
+
|
420 |
+
max_length = prompt_embeds.shape[1]
|
421 |
+
uncond_input = self.tokenizer(
|
422 |
+
uncond_tokens,
|
423 |
+
padding="max_length",
|
424 |
+
max_length=max_length,
|
425 |
+
truncation=True,
|
426 |
+
return_tensors="pt",
|
427 |
+
)
|
428 |
+
|
429 |
+
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
430 |
+
attention_mask = uncond_input.attention_mask.to(device)
|
431 |
+
else:
|
432 |
+
attention_mask = None
|
433 |
+
|
434 |
+
negative_prompt_embeds = self.text_encoder(
|
435 |
+
uncond_input.input_ids.to(device),
|
436 |
+
attention_mask=attention_mask,
|
437 |
+
)
|
438 |
+
negative_prompt_embeds = negative_prompt_embeds[0]
|
439 |
+
|
440 |
+
if do_classifier_free_guidance:
|
441 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
442 |
+
seq_len = negative_prompt_embeds.shape[1]
|
443 |
+
|
444 |
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
|
445 |
+
|
446 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
447 |
+
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
448 |
+
|
449 |
+
if self.text_encoder is not None:
|
450 |
+
if isinstance(self, LoraLoaderMixin) and USE_PEFT_BACKEND:
|
451 |
+
# Retrieve the original scale by scaling back the LoRA layers
|
452 |
+
unscale_lora_layers(self.text_encoder, lora_scale)
|
453 |
+
|
454 |
+
return prompt_embeds, negative_prompt_embeds
|
455 |
+
|
456 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
|
457 |
+
def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
|
458 |
+
dtype = next(self.image_encoder.parameters()).dtype
|
459 |
+
|
460 |
+
if not isinstance(image, torch.Tensor):
|
461 |
+
image = self.feature_extractor(image, return_tensors="pt").pixel_values
|
462 |
+
|
463 |
+
image = image.to(device=device, dtype=dtype)
|
464 |
+
if output_hidden_states:
|
465 |
+
image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
|
466 |
+
image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
|
467 |
+
uncond_image_enc_hidden_states = self.image_encoder(
|
468 |
+
torch.zeros_like(image), output_hidden_states=True
|
469 |
+
).hidden_states[-2]
|
470 |
+
uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
|
471 |
+
num_images_per_prompt, dim=0
|
472 |
+
)
|
473 |
+
return image_enc_hidden_states, uncond_image_enc_hidden_states
|
474 |
+
else:
|
475 |
+
image_embeds = self.image_encoder(image).image_embeds
|
476 |
+
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
|
477 |
+
uncond_image_embeds = torch.zeros_like(image_embeds)
|
478 |
+
|
479 |
+
return image_embeds, uncond_image_embeds
|
480 |
+
|
481 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
|
482 |
+
def prepare_ip_adapter_image_embeds(
|
483 |
+
self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
|
484 |
+
):
|
485 |
+
if ip_adapter_image_embeds is None:
|
486 |
+
if not isinstance(ip_adapter_image, list):
|
487 |
+
ip_adapter_image = [ip_adapter_image]
|
488 |
+
|
489 |
+
if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
|
490 |
+
raise ValueError(
|
491 |
+
f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
|
492 |
+
)
|
493 |
+
|
494 |
+
image_embeds = []
|
495 |
+
for single_ip_adapter_image, image_proj_layer in zip(
|
496 |
+
ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
|
497 |
+
):
|
498 |
+
output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
|
499 |
+
single_image_embeds, single_negative_image_embeds = self.encode_image(
|
500 |
+
single_ip_adapter_image, device, 1, output_hidden_state
|
501 |
+
)
|
502 |
+
single_image_embeds = torch.stack([single_image_embeds] * num_images_per_prompt, dim=0)
|
503 |
+
single_negative_image_embeds = torch.stack(
|
504 |
+
[single_negative_image_embeds] * num_images_per_prompt, dim=0
|
505 |
+
)
|
506 |
+
|
507 |
+
if do_classifier_free_guidance:
|
508 |
+
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
|
509 |
+
single_image_embeds = single_image_embeds.to(device)
|
510 |
+
|
511 |
+
image_embeds.append(single_image_embeds)
|
512 |
+
else:
|
513 |
+
repeat_dims = [1]
|
514 |
+
image_embeds = []
|
515 |
+
for single_image_embeds in ip_adapter_image_embeds:
|
516 |
+
if do_classifier_free_guidance:
|
517 |
+
single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
|
518 |
+
single_image_embeds = single_image_embeds.repeat(
|
519 |
+
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
|
520 |
+
)
|
521 |
+
single_negative_image_embeds = single_negative_image_embeds.repeat(
|
522 |
+
num_images_per_prompt, *(repeat_dims * len(single_negative_image_embeds.shape[1:]))
|
523 |
+
)
|
524 |
+
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
|
525 |
+
else:
|
526 |
+
single_image_embeds = single_image_embeds.repeat(
|
527 |
+
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
|
528 |
+
)
|
529 |
+
image_embeds.append(single_image_embeds)
|
530 |
+
|
531 |
+
return image_embeds
|
532 |
+
|
533 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
|
534 |
+
def run_safety_checker(self, image, device, dtype):
|
535 |
+
if self.safety_checker is None:
|
536 |
+
has_nsfw_concept = None
|
537 |
+
else:
|
538 |
+
if torch.is_tensor(image):
|
539 |
+
feature_extractor_input = self.image_processor.postprocess(image, output_type="pil")
|
540 |
+
else:
|
541 |
+
feature_extractor_input = self.image_processor.numpy_to_pil(image)
|
542 |
+
safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device)
|
543 |
+
image, has_nsfw_concept = self.safety_checker(
|
544 |
+
images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
|
545 |
+
)
|
546 |
+
return image, has_nsfw_concept
|
547 |
+
|
548 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents
|
549 |
+
def decode_latents(self, latents):
|
550 |
+
deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead"
|
551 |
+
deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False)
|
552 |
+
|
553 |
+
latents = 1 / self.vae.config.scaling_factor * latents
|
554 |
+
image = self.vae.decode(latents, return_dict=False)[0]
|
555 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
556 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
|
557 |
+
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
558 |
+
return image
|
559 |
+
|
560 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
561 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
562 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
563 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
564 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
565 |
+
# and should be between [0, 1]
|
566 |
+
|
567 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
568 |
+
extra_step_kwargs = {}
|
569 |
+
if accepts_eta:
|
570 |
+
extra_step_kwargs["eta"] = eta
|
571 |
+
|
572 |
+
# check if the scheduler accepts generator
|
573 |
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
574 |
+
if accepts_generator:
|
575 |
+
extra_step_kwargs["generator"] = generator
|
576 |
+
return extra_step_kwargs
|
577 |
+
|
578 |
+
def check_inputs(
|
579 |
+
self,
|
580 |
+
prompt,
|
581 |
+
image,
|
582 |
+
callback_steps,
|
583 |
+
negative_prompt=None,
|
584 |
+
prompt_embeds=None,
|
585 |
+
negative_prompt_embeds=None,
|
586 |
+
ip_adapter_image=None,
|
587 |
+
ip_adapter_image_embeds=None,
|
588 |
+
extra_condition_scale=1.0,
|
589 |
+
control_guidance_start=0.0,
|
590 |
+
control_guidance_end=1.0,
|
591 |
+
callback_on_step_end_tensor_inputs=None,
|
592 |
+
):
|
593 |
+
if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
|
594 |
+
raise ValueError(
|
595 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
596 |
+
f" {type(callback_steps)}."
|
597 |
+
)
|
598 |
+
|
599 |
+
if callback_on_step_end_tensor_inputs is not None and not all(
|
600 |
+
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
601 |
+
):
|
602 |
+
raise ValueError(
|
603 |
+
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
604 |
+
)
|
605 |
+
|
606 |
+
if prompt is not None and prompt_embeds is not None:
|
607 |
+
raise ValueError(
|
608 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
609 |
+
" only forward one of the two."
|
610 |
+
)
|
611 |
+
elif prompt is None and prompt_embeds is None:
|
612 |
+
raise ValueError(
|
613 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
614 |
+
)
|
615 |
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
616 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
617 |
+
|
618 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
619 |
+
raise ValueError(
|
620 |
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
621 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
622 |
+
)
|
623 |
+
|
624 |
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
625 |
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
626 |
+
raise ValueError(
|
627 |
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
628 |
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
629 |
+
f" {negative_prompt_embeds.shape}."
|
630 |
+
)
|
631 |
+
|
632 |
+
# Check `image`
|
633 |
+
unet: UNet2DConditionModelEx = self.unet._orig_mod if is_compiled_module(self.unet) else self.unet
|
634 |
+
num_extra_conditions = len(unet.extra_condition_names)
|
635 |
+
if num_extra_conditions == 1:
|
636 |
+
self.check_image(image, prompt, prompt_embeds)
|
637 |
+
elif num_extra_conditions > 1:
|
638 |
+
if not isinstance(image, list):
|
639 |
+
raise TypeError("For multiple extra conditions: `image` must be type `list`")
|
640 |
+
|
641 |
+
# When `image` is a nested list:
|
642 |
+
# (e.g. [[canny_image_1, pose_image_1], [canny_image_2, pose_image_2]])
|
643 |
+
elif any(isinstance(i, list) for i in image):
|
644 |
+
transposed_image = [list(t) for t in zip(*image)]
|
645 |
+
if len(transposed_image) != num_extra_conditions:
|
646 |
+
raise ValueError(
|
647 |
+
f"For multiple extra conditions: if you pass`image` as a list of list, each sublist must have the same length as the number of extra conditions, but the sublists in `image` got {len(transposed_image)} images and {num_extra_conditions} extra conditions."
|
648 |
+
)
|
649 |
+
for image_ in transposed_image:
|
650 |
+
self.check_image(image_, prompt, prompt_embeds)
|
651 |
+
elif len(image) != num_extra_conditions:
|
652 |
+
raise ValueError(
|
653 |
+
f"For multiple extra conditions: `image` must have the same length as the number of extra conditions, but got {len(image)} images and {num_extra_conditions} extra conditions."
|
654 |
+
)
|
655 |
+
else:
|
656 |
+
for image_ in image:
|
657 |
+
self.check_image(image_, prompt, prompt_embeds)
|
658 |
+
else:
|
659 |
+
assert False
|
660 |
+
|
661 |
+
# Check `extra_condition_scale`
|
662 |
+
if num_extra_conditions == 1:
|
663 |
+
if not isinstance(extra_condition_scale, float):
|
664 |
+
raise TypeError("For single extra condition: `extra_condition_scale` must be type `float`.")
|
665 |
+
elif num_extra_conditions >= 1:
|
666 |
+
if isinstance(extra_condition_scale, list):
|
667 |
+
if any(isinstance(i, list) for i in extra_condition_scale):
|
668 |
+
raise ValueError(
|
669 |
+
"A single batch of varying conditioning scale settings (e.g. [[1.0, 0.5], [0.2, 0.8]]) is not supported at the moment. "
|
670 |
+
"The conditioning scale must be fixed across the batch."
|
671 |
+
)
|
672 |
+
elif isinstance(extra_condition_scale, list) and len(extra_condition_scale) != num_extra_conditions:
|
673 |
+
raise ValueError(
|
674 |
+
"For multiple extra conditions: When `extra_condition_scale` is specified as `list`, it must have"
|
675 |
+
" the same length as the number of extra conditions"
|
676 |
+
)
|
677 |
+
else:
|
678 |
+
assert False
|
679 |
+
|
680 |
+
if not isinstance(control_guidance_start, (tuple, list)):
|
681 |
+
control_guidance_start = [control_guidance_start]
|
682 |
+
|
683 |
+
if not isinstance(control_guidance_end, (tuple, list)):
|
684 |
+
control_guidance_end = [control_guidance_end]
|
685 |
+
|
686 |
+
if len(control_guidance_start) != len(control_guidance_end):
|
687 |
+
raise ValueError(
|
688 |
+
f"`control_guidance_start` has {len(control_guidance_start)} elements, but `control_guidance_end` has {len(control_guidance_end)} elements. Make sure to provide the same number of elements to each list."
|
689 |
+
)
|
690 |
+
|
691 |
+
if num_extra_conditions > 1:
|
692 |
+
if len(control_guidance_start) != num_extra_conditions:
|
693 |
+
raise ValueError(
|
694 |
+
f"`control_guidance_start`: {control_guidance_start} has {len(control_guidance_start)} elements but there are {num_extra_conditions} extra conditions available. Make sure to provide {num_extra_conditions}."
|
695 |
+
)
|
696 |
+
|
697 |
+
for start, end in zip(control_guidance_start, control_guidance_end):
|
698 |
+
if start >= end:
|
699 |
+
raise ValueError(
|
700 |
+
f"control guidance start: {start} cannot be larger or equal to control guidance end: {end}."
|
701 |
+
)
|
702 |
+
if start < 0.0:
|
703 |
+
raise ValueError(f"control guidance start: {start} can't be smaller than 0.")
|
704 |
+
if end > 1.0:
|
705 |
+
raise ValueError(f"control guidance end: {end} can't be larger than 1.0.")
|
706 |
+
|
707 |
+
if ip_adapter_image is not None and ip_adapter_image_embeds is not None:
|
708 |
+
raise ValueError(
|
709 |
+
"Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined."
|
710 |
+
)
|
711 |
+
|
712 |
+
if ip_adapter_image_embeds is not None:
|
713 |
+
if not isinstance(ip_adapter_image_embeds, list):
|
714 |
+
raise ValueError(
|
715 |
+
f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}"
|
716 |
+
)
|
717 |
+
elif ip_adapter_image_embeds[0].ndim not in [3, 4]:
|
718 |
+
raise ValueError(
|
719 |
+
f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D"
|
720 |
+
)
|
721 |
+
|
722 |
+
def check_image(self, image, prompt, prompt_embeds):
|
723 |
+
image_is_pil = isinstance(image, PIL.Image.Image)
|
724 |
+
image_is_tensor = isinstance(image, torch.Tensor)
|
725 |
+
image_is_np = isinstance(image, np.ndarray)
|
726 |
+
image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image)
|
727 |
+
image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor)
|
728 |
+
image_is_np_list = isinstance(image, list) and isinstance(image[0], np.ndarray)
|
729 |
+
|
730 |
+
if (
|
731 |
+
not image_is_pil
|
732 |
+
and not image_is_tensor
|
733 |
+
and not image_is_np
|
734 |
+
and not image_is_pil_list
|
735 |
+
and not image_is_tensor_list
|
736 |
+
and not image_is_np_list
|
737 |
+
):
|
738 |
+
raise TypeError(
|
739 |
+
f"image must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(image)}"
|
740 |
+
)
|
741 |
+
|
742 |
+
if image_is_pil:
|
743 |
+
image_batch_size = 1
|
744 |
+
else:
|
745 |
+
image_batch_size = len(image)
|
746 |
+
|
747 |
+
if prompt is not None and isinstance(prompt, str):
|
748 |
+
prompt_batch_size = 1
|
749 |
+
elif prompt is not None and isinstance(prompt, list):
|
750 |
+
prompt_batch_size = len(prompt)
|
751 |
+
elif prompt_embeds is not None:
|
752 |
+
prompt_batch_size = prompt_embeds.shape[0]
|
753 |
+
|
754 |
+
if image_batch_size != 1 and image_batch_size != prompt_batch_size:
|
755 |
+
raise ValueError(
|
756 |
+
f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}"
|
757 |
+
)
|
758 |
+
|
759 |
+
def prepare_image(
|
760 |
+
self,
|
761 |
+
image,
|
762 |
+
width,
|
763 |
+
height,
|
764 |
+
batch_size,
|
765 |
+
num_images_per_prompt,
|
766 |
+
device,
|
767 |
+
dtype,
|
768 |
+
do_classifier_free_guidance=False,
|
769 |
+
):
|
770 |
+
image = self.image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32)
|
771 |
+
image_batch_size = image.shape[0]
|
772 |
+
|
773 |
+
if image_batch_size == 1:
|
774 |
+
repeat_by = batch_size
|
775 |
+
else:
|
776 |
+
# image batch size is the same as prompt batch size
|
777 |
+
repeat_by = num_images_per_prompt
|
778 |
+
|
779 |
+
image = image.repeat_interleave(repeat_by, dim=0)
|
780 |
+
|
781 |
+
image = image.to(device=device, dtype=dtype)
|
782 |
+
|
783 |
+
if do_classifier_free_guidance:
|
784 |
+
image = torch.cat([image] * 2)
|
785 |
+
|
786 |
+
return image
|
787 |
+
|
788 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
|
789 |
+
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
|
790 |
+
shape = (
|
791 |
+
batch_size,
|
792 |
+
num_channels_latents,
|
793 |
+
int(height) // self.vae_scale_factor,
|
794 |
+
int(width) // self.vae_scale_factor,
|
795 |
+
)
|
796 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
797 |
+
raise ValueError(
|
798 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
799 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
800 |
+
)
|
801 |
+
|
802 |
+
if latents is None:
|
803 |
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
804 |
+
else:
|
805 |
+
latents = latents.to(device)
|
806 |
+
|
807 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
808 |
+
latents = latents * self.scheduler.init_noise_sigma
|
809 |
+
return latents
|
810 |
+
|
811 |
+
# Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
|
812 |
+
def get_guidance_scale_embedding(
|
813 |
+
self, w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32
|
814 |
+
) -> torch.Tensor:
|
815 |
+
"""
|
816 |
+
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
|
817 |
+
|
818 |
+
Args:
|
819 |
+
w (`torch.Tensor`):
|
820 |
+
Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings.
|
821 |
+
embedding_dim (`int`, *optional*, defaults to 512):
|
822 |
+
Dimension of the embeddings to generate.
|
823 |
+
dtype (`torch.dtype`, *optional*, defaults to `torch.float32`):
|
824 |
+
Data type of the generated embeddings.
|
825 |
+
|
826 |
+
Returns:
|
827 |
+
`torch.Tensor`: Embedding vectors with shape `(len(w), embedding_dim)`.
|
828 |
+
"""
|
829 |
+
assert len(w.shape) == 1
|
830 |
+
w = w * 1000.0
|
831 |
+
|
832 |
+
half_dim = embedding_dim // 2
|
833 |
+
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
|
834 |
+
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
|
835 |
+
emb = w.to(dtype)[:, None] * emb[None, :]
|
836 |
+
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
|
837 |
+
if embedding_dim % 2 == 1: # zero pad
|
838 |
+
emb = torch.nn.functional.pad(emb, (0, 1))
|
839 |
+
assert emb.shape == (w.shape[0], embedding_dim)
|
840 |
+
return emb
|
841 |
+
|
842 |
+
@property
|
843 |
+
def guidance_scale(self):
|
844 |
+
return self._guidance_scale
|
845 |
+
|
846 |
+
@property
|
847 |
+
def clip_skip(self):
|
848 |
+
return self._clip_skip
|
849 |
+
|
850 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
851 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
852 |
+
# corresponds to doing no classifier free guidance.
|
853 |
+
@property
|
854 |
+
def do_classifier_free_guidance(self):
|
855 |
+
return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None
|
856 |
+
|
857 |
+
@property
|
858 |
+
def cross_attention_kwargs(self):
|
859 |
+
return self._cross_attention_kwargs
|
860 |
+
|
861 |
+
@property
|
862 |
+
def num_timesteps(self):
|
863 |
+
return self._num_timesteps
|
864 |
+
|
865 |
+
@classmethod
|
866 |
+
@validate_hf_hub_args
|
867 |
+
def lora_state_dict(
|
868 |
+
cls,
|
869 |
+
pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
|
870 |
+
**kwargs,
|
871 |
+
):
|
872 |
+
# Override to add support for different LoRA alphas
|
873 |
+
state_dict, network_alphas = super(StableDiffusionControlLoraV3Pipeline, cls).lora_state_dict(
|
874 |
+
pretrained_model_name_or_path_or_dict, **kwargs
|
875 |
+
)
|
876 |
+
if network_alphas is None:
|
877 |
+
network_alphas = {}
|
878 |
+
for k, v in state_dict.items():
|
879 |
+
if ".lora_A." in k:
|
880 |
+
network_alphas[".".join(k.split(".lora_A.")[0].split(".") + ["alpha"])] = v.shape[0]
|
881 |
+
return state_dict, network_alphas
|
882 |
+
|
883 |
+
def load_lora_weights(
|
884 |
+
self,
|
885 |
+
pretrained_model_name_or_path_or_dict: Union[
|
886 |
+
Union[str, Dict[str, torch.Tensor]],
|
887 |
+
List[Union[str, Dict[str, torch.Tensor]]]
|
888 |
+
],
|
889 |
+
adapter_name=None,
|
890 |
+
**kwargs
|
891 |
+
):
|
892 |
+
unet: UNet2DConditionModelEx = self.unet._orig_mod if is_compiled_module(self.unet) else self.unet
|
893 |
+
num_condition_names = len(unet.extra_condition_names)
|
894 |
+
in_channels = unet.config.in_channels
|
895 |
+
|
896 |
+
if adapter_name is not None and adapter_name not in unet.extra_condition_names:
|
897 |
+
return super().load_lora_weights(pretrained_model_name_or_path_or_dict, adapter_name, **kwargs)
|
898 |
+
|
899 |
+
if not isinstance(pretrained_model_name_or_path_or_dict, list):
|
900 |
+
pretrained_model_name_or_path_or_dict = [pretrained_model_name_or_path_or_dict] * num_condition_names
|
901 |
+
pretrained_model_name_or_path_or_dict_list = pretrained_model_name_or_path_or_dict
|
902 |
+
|
903 |
+
assert len(pretrained_model_name_or_path_or_dict) == len(unet.extra_condition_names)
|
904 |
+
|
905 |
+
adapter_name_ori = adapter_name
|
906 |
+
for i, (pretrained_model_name_or_path_or_dict, adapter_name) in enumerate(zip(
|
907 |
+
pretrained_model_name_or_path_or_dict_list,
|
908 |
+
unet.extra_condition_names
|
909 |
+
)):
|
910 |
+
_kwargs = {**kwargs}
|
911 |
+
subfolder = _kwargs.pop("subfolder", None)
|
912 |
+
if isinstance(subfolder, list):
|
913 |
+
subfolder = subfolder[i]
|
914 |
+
weight_name = _kwargs.pop("weight_name", "pytorch_lora_weights.safetensors")
|
915 |
+
|
916 |
+
if not isinstance(pretrained_model_name_or_path_or_dict, dict):
|
917 |
+
pretrained_model_name_or_path_or_dict, _ = self.lora_state_dict(
|
918 |
+
pretrained_model_name_or_path_or_dict,
|
919 |
+
subfolder=subfolder,
|
920 |
+
weight_name=weight_name,
|
921 |
+
**_kwargs
|
922 |
+
)
|
923 |
+
|
924 |
+
if adapter_name_ori is not None:
|
925 |
+
# only load lora of the input adapter name, then break the loop
|
926 |
+
i = unet.extra_condition_names.index(adapter_name_ori)
|
927 |
+
adapter_name = adapter_name_ori
|
928 |
+
|
929 |
+
unet_conv_in_lora_A_name, old_weight = ([
|
930 |
+
(k, v)
|
931 |
+
for k, v in pretrained_model_name_or_path_or_dict.items()
|
932 |
+
if "unet." in k and ".conv_in." in k and ".lora_A." in k
|
933 |
+
] + [(None, None)])[0]
|
934 |
+
if unet_conv_in_lora_A_name is not None:
|
935 |
+
in_weight = old_weight[:,:in_channels]
|
936 |
+
cond_weight = old_weight[:,in_channels:]
|
937 |
+
zero_weight = torch.zeros_like(in_weight)
|
938 |
+
new_weight = torch.cat(
|
939 |
+
[in_weight] +
|
940 |
+
[zero_weight] * i +
|
941 |
+
[cond_weight] +
|
942 |
+
[zero_weight] * (num_condition_names - i - 1),
|
943 |
+
dim=1
|
944 |
+
)
|
945 |
+
pretrained_model_name_or_path_or_dict[unet_conv_in_lora_A_name] = new_weight
|
946 |
+
|
947 |
+
super().load_lora_weights(pretrained_model_name_or_path_or_dict, adapter_name, **_kwargs)
|
948 |
+
|
949 |
+
if adapter_name_ori is not None:
|
950 |
+
break
|
951 |
+
|
952 |
+
unet.activate_adapters()
|
953 |
+
|
954 |
+
@torch.no_grad()
|
955 |
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
956 |
+
def __call__(
|
957 |
+
self,
|
958 |
+
prompt: Union[str, List[str]] = None,
|
959 |
+
image: PipelineImageInput = None,
|
960 |
+
height: Optional[int] = None,
|
961 |
+
width: Optional[int] = None,
|
962 |
+
num_inference_steps: int = 50,
|
963 |
+
timesteps: List[int] = None,
|
964 |
+
sigmas: List[float] = None,
|
965 |
+
guidance_scale: float = 7.5,
|
966 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
967 |
+
num_images_per_prompt: Optional[int] = 1,
|
968 |
+
eta: float = 0.0,
|
969 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
970 |
+
latents: Optional[torch.Tensor] = None,
|
971 |
+
prompt_embeds: Optional[torch.Tensor] = None,
|
972 |
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
973 |
+
ip_adapter_image: Optional[PipelineImageInput] = None,
|
974 |
+
ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
|
975 |
+
output_type: Optional[str] = "pil",
|
976 |
+
return_dict: bool = True,
|
977 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
978 |
+
extra_condition_scale: Union[float, List[float]] = 1.0,
|
979 |
+
control_guidance_start: Union[float, List[float]] = 0.0,
|
980 |
+
control_guidance_end: Union[float, List[float]] = 1.0,
|
981 |
+
clip_skip: Optional[int] = None,
|
982 |
+
callback_on_step_end: Optional[
|
983 |
+
Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
|
984 |
+
] = None,
|
985 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
986 |
+
**kwargs,
|
987 |
+
):
|
988 |
+
r"""
|
989 |
+
The call function to the pipeline for generation.
|
990 |
+
|
991 |
+
Args:
|
992 |
+
prompt (`str` or `List[str]`, *optional*):
|
993 |
+
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
|
994 |
+
image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
|
995 |
+
`List[List[torch.Tensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
|
996 |
+
The extra input condition to provide guidance to the `unet` for generation after encoded by `vae`. If the type is
|
997 |
+
specified as `torch.Tensor`, its `vae` latent representation is passed to UNet. `PIL.Image.Image` can also be accepted
|
998 |
+
as an image. The dimensions of the output image defaults to `image`'s dimensions. If height and/or
|
999 |
+
width are passed, `image` is resized accordingly. If multiple extra conditions are specified in `unet`,
|
1000 |
+
images must be passed as a list such that each element of the list can be correctly batched for input
|
1001 |
+
to `unet`. When `prompt` is a list, and if a list of images is passed for `unet`, each will be paired with each prompt
|
1002 |
+
in the `prompt` list. This also applies to multiple extra conditions, where a list of image lists can be
|
1003 |
+
passed to batch for each prompt and each extra condition.
|
1004 |
+
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
1005 |
+
The height in pixels of the generated image.
|
1006 |
+
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
1007 |
+
The width in pixels of the generated image.
|
1008 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
1009 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
1010 |
+
expense of slower inference.
|
1011 |
+
timesteps (`List[int]`, *optional*):
|
1012 |
+
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
1013 |
+
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
1014 |
+
passed will be used. Must be in descending order.
|
1015 |
+
sigmas (`List[float]`, *optional*):
|
1016 |
+
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
|
1017 |
+
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
|
1018 |
+
will be used.
|
1019 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
1020 |
+
A higher guidance scale value encourages the model to generate images closely linked to the text
|
1021 |
+
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
|
1022 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
1023 |
+
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
|
1024 |
+
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
|
1025 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
1026 |
+
The number of images to generate per prompt.
|
1027 |
+
eta (`float`, *optional*, defaults to 0.0):
|
1028 |
+
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
|
1029 |
+
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
|
1030 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
1031 |
+
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
1032 |
+
generation deterministic.
|
1033 |
+
latents (`torch.Tensor`, *optional*):
|
1034 |
+
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
|
1035 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
1036 |
+
tensor is generated by sampling using the supplied random `generator`.
|
1037 |
+
prompt_embeds (`torch.Tensor`, *optional*):
|
1038 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
|
1039 |
+
provided, text embeddings are generated from the `prompt` input argument.
|
1040 |
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
1041 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
1042 |
+
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
|
1043 |
+
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
|
1044 |
+
ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
|
1045 |
+
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
|
1046 |
+
IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
|
1047 |
+
contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
|
1048 |
+
provided, embeddings are computed from the `ip_adapter_image` input argument.
|
1049 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
1050 |
+
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
|
1051 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
1052 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
1053 |
+
plain tuple.
|
1054 |
+
callback (`Callable`, *optional*):
|
1055 |
+
A function that calls every `callback_steps` steps during inference. The function is called with the
|
1056 |
+
following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`.
|
1057 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
1058 |
+
The frequency at which the `callback` function is called. If not specified, the callback is called at
|
1059 |
+
every step.
|
1060 |
+
cross_attention_kwargs (`dict`, *optional*):
|
1061 |
+
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
|
1062 |
+
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
1063 |
+
extra_condition_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
|
1064 |
+
The control lora scale of `unet`. If multiple extra conditions are specified in `unet`, you can set
|
1065 |
+
the corresponding scale as a list.
|
1066 |
+
control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0):
|
1067 |
+
The percentage of total steps at which the extra condtion starts applying.
|
1068 |
+
control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0):
|
1069 |
+
The percentage of total steps at which the extra condtion stops applying.
|
1070 |
+
clip_skip (`int`, *optional*):
|
1071 |
+
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
1072 |
+
the output of the pre-final layer will be used for computing the prompt embeddings.
|
1073 |
+
callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
|
1074 |
+
A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
|
1075 |
+
each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
|
1076 |
+
DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
|
1077 |
+
list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
|
1078 |
+
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
1079 |
+
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
1080 |
+
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
1081 |
+
`._callback_tensor_inputs` attribute of your pipeline class.
|
1082 |
+
|
1083 |
+
Examples:
|
1084 |
+
|
1085 |
+
Returns:
|
1086 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
1087 |
+
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
|
1088 |
+
otherwise a `tuple` is returned where the first element is a list with the generated images and the
|
1089 |
+
second element is a list of `bool`s indicating whether the corresponding generated image contains
|
1090 |
+
"not-safe-for-work" (nsfw) content.
|
1091 |
+
"""
|
1092 |
+
|
1093 |
+
callback = kwargs.pop("callback", None)
|
1094 |
+
callback_steps = kwargs.pop("callback_steps", None)
|
1095 |
+
|
1096 |
+
if callback is not None:
|
1097 |
+
deprecate(
|
1098 |
+
"callback",
|
1099 |
+
"1.0.0",
|
1100 |
+
"Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
|
1101 |
+
)
|
1102 |
+
if callback_steps is not None:
|
1103 |
+
deprecate(
|
1104 |
+
"callback_steps",
|
1105 |
+
"1.0.0",
|
1106 |
+
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
|
1107 |
+
)
|
1108 |
+
|
1109 |
+
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
|
1110 |
+
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
|
1111 |
+
|
1112 |
+
unet: UNet2DConditionModelEx = self.unet._orig_mod if is_compiled_module(self.unet) else self.unet
|
1113 |
+
num_extra_conditions = len(unet.extra_condition_names)
|
1114 |
+
|
1115 |
+
# align format for control guidance
|
1116 |
+
if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
|
1117 |
+
control_guidance_start = len(control_guidance_end) * [control_guidance_start]
|
1118 |
+
elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
|
1119 |
+
control_guidance_end = len(control_guidance_start) * [control_guidance_end]
|
1120 |
+
elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
|
1121 |
+
mult = num_extra_conditions
|
1122 |
+
control_guidance_start, control_guidance_end = (
|
1123 |
+
mult * [control_guidance_start],
|
1124 |
+
mult * [control_guidance_end],
|
1125 |
+
)
|
1126 |
+
|
1127 |
+
# 1. Check inputs. Raise error if not correct
|
1128 |
+
self.check_inputs(
|
1129 |
+
prompt,
|
1130 |
+
image,
|
1131 |
+
callback_steps,
|
1132 |
+
negative_prompt,
|
1133 |
+
prompt_embeds,
|
1134 |
+
negative_prompt_embeds,
|
1135 |
+
ip_adapter_image,
|
1136 |
+
ip_adapter_image_embeds,
|
1137 |
+
extra_condition_scale,
|
1138 |
+
control_guidance_start,
|
1139 |
+
control_guidance_end,
|
1140 |
+
callback_on_step_end_tensor_inputs,
|
1141 |
+
)
|
1142 |
+
|
1143 |
+
self._guidance_scale = guidance_scale
|
1144 |
+
self._clip_skip = clip_skip
|
1145 |
+
self._cross_attention_kwargs = cross_attention_kwargs
|
1146 |
+
|
1147 |
+
# 2. Define call parameters
|
1148 |
+
if prompt is not None and isinstance(prompt, str):
|
1149 |
+
batch_size = 1
|
1150 |
+
elif prompt is not None and isinstance(prompt, list):
|
1151 |
+
batch_size = len(prompt)
|
1152 |
+
else:
|
1153 |
+
batch_size = prompt_embeds.shape[0]
|
1154 |
+
|
1155 |
+
device = self._execution_device
|
1156 |
+
|
1157 |
+
if num_extra_conditions > 1 and isinstance(extra_condition_scale, float):
|
1158 |
+
extra_condition_scale = [extra_condition_scale] * num_extra_conditions
|
1159 |
+
|
1160 |
+
# 3. Encode input prompt
|
1161 |
+
text_encoder_lora_scale = (
|
1162 |
+
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
|
1163 |
+
)
|
1164 |
+
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
|
1165 |
+
prompt,
|
1166 |
+
device,
|
1167 |
+
num_images_per_prompt,
|
1168 |
+
self.do_classifier_free_guidance,
|
1169 |
+
negative_prompt,
|
1170 |
+
prompt_embeds=prompt_embeds,
|
1171 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
1172 |
+
lora_scale=text_encoder_lora_scale,
|
1173 |
+
clip_skip=self.clip_skip,
|
1174 |
+
)
|
1175 |
+
# For classifier free guidance, we need to do two forward passes.
|
1176 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
1177 |
+
# to avoid doing two forward passes
|
1178 |
+
if self.do_classifier_free_guidance:
|
1179 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
1180 |
+
|
1181 |
+
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
|
1182 |
+
image_embeds = self.prepare_ip_adapter_image_embeds(
|
1183 |
+
ip_adapter_image,
|
1184 |
+
ip_adapter_image_embeds,
|
1185 |
+
device,
|
1186 |
+
batch_size * num_images_per_prompt,
|
1187 |
+
self.do_classifier_free_guidance,
|
1188 |
+
)
|
1189 |
+
|
1190 |
+
# 4. Prepare image
|
1191 |
+
if num_extra_conditions == 1:
|
1192 |
+
image = self.prepare_image(
|
1193 |
+
image=image,
|
1194 |
+
width=width,
|
1195 |
+
height=height,
|
1196 |
+
batch_size=batch_size * num_images_per_prompt,
|
1197 |
+
num_images_per_prompt=num_images_per_prompt,
|
1198 |
+
device=device,
|
1199 |
+
dtype=unet.dtype,
|
1200 |
+
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
1201 |
+
)
|
1202 |
+
height, width = image.shape[-2:]
|
1203 |
+
image = (
|
1204 |
+
self.vae.encode(image.to(dtype=unet.dtype)).latent_dist.mode() * self.vae.config.scaling_factor
|
1205 |
+
)
|
1206 |
+
elif num_extra_conditions >= 1:
|
1207 |
+
images = []
|
1208 |
+
|
1209 |
+
# Nested lists as extra condition
|
1210 |
+
if isinstance(image[0], list):
|
1211 |
+
# Transpose the nested image list
|
1212 |
+
image = [list(t) for t in zip(*image)]
|
1213 |
+
|
1214 |
+
for image_ in image:
|
1215 |
+
image_ = self.prepare_image(
|
1216 |
+
image=image_,
|
1217 |
+
width=width,
|
1218 |
+
height=height,
|
1219 |
+
batch_size=batch_size * num_images_per_prompt,
|
1220 |
+
num_images_per_prompt=num_images_per_prompt,
|
1221 |
+
device=device,
|
1222 |
+
dtype=unet.dtype,
|
1223 |
+
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
1224 |
+
)
|
1225 |
+
|
1226 |
+
images.append(image_)
|
1227 |
+
|
1228 |
+
image = images
|
1229 |
+
height, width = image[0].shape[-2:]
|
1230 |
+
image = [
|
1231 |
+
self.vae.encode(image.to(dtype=unet.dtype)).latent_dist.mode() * self.vae.config.scaling_factor
|
1232 |
+
for image in images
|
1233 |
+
]
|
1234 |
+
else:
|
1235 |
+
assert False
|
1236 |
+
|
1237 |
+
# 5. Prepare timesteps
|
1238 |
+
timesteps, num_inference_steps = retrieve_timesteps(
|
1239 |
+
self.scheduler, num_inference_steps, device, timesteps, sigmas
|
1240 |
+
)
|
1241 |
+
self._num_timesteps = len(timesteps)
|
1242 |
+
|
1243 |
+
# 6. Prepare latent variables
|
1244 |
+
num_channels_latents = self.unet.config.in_channels
|
1245 |
+
latents = self.prepare_latents(
|
1246 |
+
batch_size * num_images_per_prompt,
|
1247 |
+
num_channels_latents,
|
1248 |
+
height,
|
1249 |
+
width,
|
1250 |
+
prompt_embeds.dtype,
|
1251 |
+
device,
|
1252 |
+
generator,
|
1253 |
+
latents,
|
1254 |
+
)
|
1255 |
+
|
1256 |
+
# 6.5 Optionally get Guidance Scale Embedding
|
1257 |
+
timestep_cond = None
|
1258 |
+
if self.unet.config.time_cond_proj_dim is not None:
|
1259 |
+
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
|
1260 |
+
timestep_cond = self.get_guidance_scale_embedding(
|
1261 |
+
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
|
1262 |
+
).to(device=device, dtype=latents.dtype)
|
1263 |
+
|
1264 |
+
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
1265 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
1266 |
+
|
1267 |
+
# 7.1 Add image embeds for IP-Adapter
|
1268 |
+
added_cond_kwargs = (
|
1269 |
+
{"image_embeds": image_embeds}
|
1270 |
+
if ip_adapter_image is not None or ip_adapter_image_embeds is not None
|
1271 |
+
else None
|
1272 |
+
)
|
1273 |
+
|
1274 |
+
# 7.2 Create tensor stating which extra_conditions to keep
|
1275 |
+
extra_condition_keep = []
|
1276 |
+
for i in range(len(timesteps)):
|
1277 |
+
keeps = [
|
1278 |
+
1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
|
1279 |
+
for s, e in zip(control_guidance_start, control_guidance_end)
|
1280 |
+
]
|
1281 |
+
extra_condition_keep.append(keeps[0] if num_extra_conditions == 1 else keeps)
|
1282 |
+
|
1283 |
+
# 8. Denoising loop
|
1284 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
1285 |
+
is_unet_compiled = is_compiled_module(self.unet)
|
1286 |
+
is_torch_higher_equal_2_1 = is_torch_version(">=", "2.1")
|
1287 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
1288 |
+
for i, t in enumerate(timesteps):
|
1289 |
+
# Relevant thread:
|
1290 |
+
# https://dev-discuss.pytorch.org/t/cudagraphs-in-pytorch-2-0/1428
|
1291 |
+
if is_unet_compiled and is_torch_higher_equal_2_1:
|
1292 |
+
torch._inductor.cudagraph_mark_step_begin()
|
1293 |
+
# expand the latents if we are doing classifier free guidance
|
1294 |
+
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
|
1295 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
1296 |
+
|
1297 |
+
if isinstance(extra_condition_keep[i], list):
|
1298 |
+
cond_scale = [c * s for c, s in zip(extra_condition_scale, extra_condition_keep[i])]
|
1299 |
+
else:
|
1300 |
+
extra_cond_scale = extra_condition_scale
|
1301 |
+
if isinstance(extra_cond_scale, list):
|
1302 |
+
extra_cond_scale = extra_cond_scale[0]
|
1303 |
+
cond_scale = extra_cond_scale * extra_condition_keep[i]
|
1304 |
+
|
1305 |
+
self.unet.set_extra_condition_scale(cond_scale)
|
1306 |
+
|
1307 |
+
# predict the noise residual
|
1308 |
+
noise_pred = self.unet(
|
1309 |
+
latent_model_input,
|
1310 |
+
t,
|
1311 |
+
encoder_hidden_states=prompt_embeds,
|
1312 |
+
timestep_cond=timestep_cond,
|
1313 |
+
cross_attention_kwargs=self.cross_attention_kwargs,
|
1314 |
+
added_cond_kwargs=added_cond_kwargs,
|
1315 |
+
extra_conditions=image,
|
1316 |
+
return_dict=False,
|
1317 |
+
)[0]
|
1318 |
+
|
1319 |
+
# perform guidance
|
1320 |
+
if self.do_classifier_free_guidance:
|
1321 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
1322 |
+
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
|
1323 |
+
|
1324 |
+
# compute the previous noisy sample x_t -> x_t-1
|
1325 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
1326 |
+
|
1327 |
+
if callback_on_step_end is not None:
|
1328 |
+
callback_kwargs = {}
|
1329 |
+
for k in callback_on_step_end_tensor_inputs:
|
1330 |
+
callback_kwargs[k] = locals()[k]
|
1331 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
1332 |
+
|
1333 |
+
latents = callback_outputs.pop("latents", latents)
|
1334 |
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
1335 |
+
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
1336 |
+
|
1337 |
+
# call the callback, if provided
|
1338 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
1339 |
+
progress_bar.update()
|
1340 |
+
if callback is not None and i % callback_steps == 0:
|
1341 |
+
step_idx = i // getattr(self.scheduler, "order", 1)
|
1342 |
+
callback(step_idx, t, latents)
|
1343 |
+
|
1344 |
+
self.unet.set_extra_condition_scale(1.0)
|
1345 |
+
|
1346 |
+
# If we do sequential model offloading, let's offload unet
|
1347 |
+
# manually for max memory savings
|
1348 |
+
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
1349 |
+
self.unet.to("cpu")
|
1350 |
+
torch.cuda.empty_cache()
|
1351 |
+
|
1352 |
+
if not output_type == "latent":
|
1353 |
+
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, generator=generator)[
|
1354 |
+
0
|
1355 |
+
]
|
1356 |
+
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
|
1357 |
+
else:
|
1358 |
+
image = latents
|
1359 |
+
has_nsfw_concept = None
|
1360 |
+
|
1361 |
+
if has_nsfw_concept is None:
|
1362 |
+
do_denormalize = [True] * image.shape[0]
|
1363 |
+
else:
|
1364 |
+
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
|
1365 |
+
|
1366 |
+
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
|
1367 |
+
|
1368 |
+
# Offload all models
|
1369 |
+
self.maybe_free_model_hooks()
|
1370 |
+
|
1371 |
+
if not return_dict:
|
1372 |
+
return (image, has_nsfw_concept)
|
1373 |
+
|
1374 |
+
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|
preprocessor.py
CHANGED
@@ -58,7 +58,8 @@ class Preprocessor:
|
|
58 |
self.model = ImageSegmentor()
|
59 |
else:
|
60 |
raise ValueError
|
61 |
-
torch.cuda.
|
|
|
62 |
gc.collect()
|
63 |
self.name = name
|
64 |
|
|
|
58 |
self.model = ImageSegmentor()
|
59 |
else:
|
60 |
raise ValueError
|
61 |
+
if torch.cuda.is_available():
|
62 |
+
torch.cuda.empty_cache()
|
63 |
gc.collect()
|
64 |
self.name = name
|
65 |
|
requirements.txt
CHANGED
@@ -1,13 +1,3 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
einops==0.6.1
|
5 |
-
gradio==3.45.2
|
6 |
-
huggingface-hub==0.16.4
|
7 |
-
mediapipe==0.10.1
|
8 |
-
opencv-python-headless==4.8.0.74
|
9 |
-
safetensors==0.3.1
|
10 |
-
torch==2.0.1
|
11 |
-
torchvision==0.15.2
|
12 |
-
transformers==4.30.2
|
13 |
-
xformers==0.0.20
|
|
|
1 |
+
controlnet_aux>=0.0.6
|
2 |
+
mediapipe>=0.10.1
|
3 |
+
opencv-python-headless>=4.8.0.74
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
settings.py
CHANGED
@@ -2,14 +2,14 @@ import os
|
|
2 |
|
3 |
import numpy as np
|
4 |
|
5 |
-
DEFAULT_MODEL_ID = os.getenv("DEFAULT_MODEL_ID", "
|
6 |
|
7 |
MAX_NUM_IMAGES = int(os.getenv("MAX_NUM_IMAGES", "3"))
|
8 |
DEFAULT_NUM_IMAGES = min(MAX_NUM_IMAGES, int(os.getenv("DEFAULT_NUM_IMAGES", "3")))
|
9 |
MAX_IMAGE_RESOLUTION = int(os.getenv("MAX_IMAGE_RESOLUTION", "768"))
|
10 |
DEFAULT_IMAGE_RESOLUTION = min(MAX_IMAGE_RESOLUTION, int(os.getenv("DEFAULT_IMAGE_RESOLUTION", "768")))
|
11 |
|
12 |
-
ALLOW_CHANGING_BASE_MODEL = os.getenv("SPACE_ID") != "
|
13 |
SHOW_DUPLICATE_BUTTON = os.getenv("SHOW_DUPLICATE_BUTTON") == "1"
|
14 |
|
15 |
MAX_SEED = np.iinfo(np.int32).max
|
|
|
2 |
|
3 |
import numpy as np
|
4 |
|
5 |
+
DEFAULT_MODEL_ID = os.getenv("DEFAULT_MODEL_ID", "SG161222/Realistic_Vision_V4.0_noVAE")
|
6 |
|
7 |
MAX_NUM_IMAGES = int(os.getenv("MAX_NUM_IMAGES", "3"))
|
8 |
DEFAULT_NUM_IMAGES = min(MAX_NUM_IMAGES, int(os.getenv("DEFAULT_NUM_IMAGES", "3")))
|
9 |
MAX_IMAGE_RESOLUTION = int(os.getenv("MAX_IMAGE_RESOLUTION", "768"))
|
10 |
DEFAULT_IMAGE_RESOLUTION = min(MAX_IMAGE_RESOLUTION, int(os.getenv("DEFAULT_IMAGE_RESOLUTION", "768")))
|
11 |
|
12 |
+
ALLOW_CHANGING_BASE_MODEL = os.getenv("SPACE_ID") != "HighCWu/control-lora-v3"
|
13 |
SHOW_DUPLICATE_BUTTON = os.getenv("SHOW_DUPLICATE_BUTTON") == "1"
|
14 |
|
15 |
MAX_SEED = np.iinfo(np.int32).max
|
unet.py
ADDED
@@ -0,0 +1,299 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
2 |
+
|
3 |
+
import copy
|
4 |
+
import torch
|
5 |
+
from torch import nn, svd_lowrank
|
6 |
+
|
7 |
+
from peft.tuners.lora import LoraLayer, Conv2d as PeftConv2d
|
8 |
+
from diffusers.configuration_utils import register_to_config
|
9 |
+
from diffusers.models.unets.unet_2d_condition import UNet2DConditionOutput, UNet2DConditionModel as UNet2DConditionModel
|
10 |
+
|
11 |
+
|
12 |
+
class UNet2DConditionModelEx(UNet2DConditionModel):
|
13 |
+
@register_to_config
|
14 |
+
def __init__(
|
15 |
+
self,
|
16 |
+
sample_size: Optional[int] = None,
|
17 |
+
in_channels: int = 4,
|
18 |
+
out_channels: int = 4,
|
19 |
+
center_input_sample: bool = False,
|
20 |
+
flip_sin_to_cos: bool = True,
|
21 |
+
freq_shift: int = 0,
|
22 |
+
down_block_types: Tuple[str] = (
|
23 |
+
"CrossAttnDownBlock2D",
|
24 |
+
"CrossAttnDownBlock2D",
|
25 |
+
"CrossAttnDownBlock2D",
|
26 |
+
"DownBlock2D",
|
27 |
+
),
|
28 |
+
mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn",
|
29 |
+
up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"),
|
30 |
+
only_cross_attention: Union[bool, Tuple[bool]] = False,
|
31 |
+
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
|
32 |
+
layers_per_block: Union[int, Tuple[int]] = 2,
|
33 |
+
downsample_padding: int = 1,
|
34 |
+
mid_block_scale_factor: float = 1,
|
35 |
+
dropout: float = 0.0,
|
36 |
+
act_fn: str = "silu",
|
37 |
+
norm_num_groups: Optional[int] = 32,
|
38 |
+
norm_eps: float = 1e-5,
|
39 |
+
cross_attention_dim: Union[int, Tuple[int]] = 1280,
|
40 |
+
transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple]] = 1,
|
41 |
+
reverse_transformer_layers_per_block: Optional[Tuple[Tuple[int]]] = None,
|
42 |
+
encoder_hid_dim: Optional[int] = None,
|
43 |
+
encoder_hid_dim_type: Optional[str] = None,
|
44 |
+
attention_head_dim: Union[int, Tuple[int]] = 8,
|
45 |
+
num_attention_heads: Optional[Union[int, Tuple[int]]] = None,
|
46 |
+
dual_cross_attention: bool = False,
|
47 |
+
use_linear_projection: bool = False,
|
48 |
+
class_embed_type: Optional[str] = None,
|
49 |
+
addition_embed_type: Optional[str] = None,
|
50 |
+
addition_time_embed_dim: Optional[int] = None,
|
51 |
+
num_class_embeds: Optional[int] = None,
|
52 |
+
upcast_attention: bool = False,
|
53 |
+
resnet_time_scale_shift: str = "default",
|
54 |
+
resnet_skip_time_act: bool = False,
|
55 |
+
resnet_out_scale_factor: float = 1.0,
|
56 |
+
time_embedding_type: str = "positional",
|
57 |
+
time_embedding_dim: Optional[int] = None,
|
58 |
+
time_embedding_act_fn: Optional[str] = None,
|
59 |
+
timestep_post_act: Optional[str] = None,
|
60 |
+
time_cond_proj_dim: Optional[int] = None,
|
61 |
+
conv_in_kernel: int = 3,
|
62 |
+
conv_out_kernel: int = 3,
|
63 |
+
projection_class_embeddings_input_dim: Optional[int] = None,
|
64 |
+
attention_type: str = "default",
|
65 |
+
class_embeddings_concat: bool = False,
|
66 |
+
mid_block_only_cross_attention: Optional[bool] = None,
|
67 |
+
cross_attention_norm: Optional[str] = None,
|
68 |
+
addition_embed_type_num_heads: int = 64,
|
69 |
+
extra_condition_names: List[str] = [],
|
70 |
+
):
|
71 |
+
num_extra_conditions = len(extra_condition_names)
|
72 |
+
super().__init__(
|
73 |
+
sample_size=sample_size,
|
74 |
+
in_channels=in_channels * (1 + num_extra_conditions),
|
75 |
+
out_channels=out_channels,
|
76 |
+
center_input_sample=center_input_sample,
|
77 |
+
flip_sin_to_cos=flip_sin_to_cos,
|
78 |
+
freq_shift=freq_shift,
|
79 |
+
down_block_types=down_block_types,
|
80 |
+
mid_block_type=mid_block_type,
|
81 |
+
up_block_types=up_block_types,
|
82 |
+
only_cross_attention=only_cross_attention,
|
83 |
+
block_out_channels=block_out_channels,
|
84 |
+
layers_per_block=layers_per_block,
|
85 |
+
downsample_padding=downsample_padding,
|
86 |
+
mid_block_scale_factor=mid_block_scale_factor,
|
87 |
+
dropout=dropout,
|
88 |
+
act_fn=act_fn,
|
89 |
+
norm_num_groups=norm_num_groups,
|
90 |
+
norm_eps=norm_eps,
|
91 |
+
cross_attention_dim=cross_attention_dim,
|
92 |
+
transformer_layers_per_block=transformer_layers_per_block,
|
93 |
+
reverse_transformer_layers_per_block=reverse_transformer_layers_per_block,
|
94 |
+
encoder_hid_dim=encoder_hid_dim,
|
95 |
+
encoder_hid_dim_type=encoder_hid_dim_type,
|
96 |
+
attention_head_dim=attention_head_dim,
|
97 |
+
num_attention_heads=num_attention_heads,
|
98 |
+
dual_cross_attention=dual_cross_attention,
|
99 |
+
use_linear_projection=use_linear_projection,
|
100 |
+
class_embed_type=class_embed_type,
|
101 |
+
addition_embed_type=addition_embed_type,
|
102 |
+
addition_time_embed_dim=addition_time_embed_dim,
|
103 |
+
num_class_embeds=num_class_embeds,
|
104 |
+
upcast_attention=upcast_attention,
|
105 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
106 |
+
resnet_skip_time_act=resnet_skip_time_act,
|
107 |
+
resnet_out_scale_factor=resnet_out_scale_factor,
|
108 |
+
time_embedding_type=time_embedding_type,
|
109 |
+
time_embedding_dim=time_embedding_dim,
|
110 |
+
time_embedding_act_fn=time_embedding_act_fn,
|
111 |
+
timestep_post_act=timestep_post_act,
|
112 |
+
time_cond_proj_dim=time_cond_proj_dim,
|
113 |
+
conv_in_kernel=conv_in_kernel,
|
114 |
+
conv_out_kernel=conv_out_kernel,
|
115 |
+
projection_class_embeddings_input_dim=projection_class_embeddings_input_dim,
|
116 |
+
attention_type=attention_type,
|
117 |
+
class_embeddings_concat=class_embeddings_concat,
|
118 |
+
mid_block_only_cross_attention=mid_block_only_cross_attention,
|
119 |
+
cross_attention_norm=cross_attention_norm,
|
120 |
+
addition_embed_type_num_heads=addition_embed_type_num_heads,)
|
121 |
+
self._internal_dict = copy.deepcopy(self._internal_dict)
|
122 |
+
self.config.in_channels = in_channels
|
123 |
+
self.config.extra_condition_names = extra_condition_names
|
124 |
+
|
125 |
+
@property
|
126 |
+
def extra_condition_names(self) -> List[str]:
|
127 |
+
return self.config.extra_condition_names
|
128 |
+
|
129 |
+
def add_extra_conditions(self, extra_condition_names: Union[str, List[str]]):
|
130 |
+
if isinstance(extra_condition_names, str):
|
131 |
+
extra_condition_names = [extra_condition_names]
|
132 |
+
conv_in_kernel = self.config.conv_in_kernel
|
133 |
+
conv_in_weight = self.conv_in.weight
|
134 |
+
self.config.extra_condition_names += extra_condition_names
|
135 |
+
full_in_channels = self.config.in_channels * (1 + len(self.config.extra_condition_names))
|
136 |
+
new_conv_in_weight = torch.zeros(
|
137 |
+
conv_in_weight.shape[0], full_in_channels, conv_in_kernel, conv_in_kernel,
|
138 |
+
dtype=conv_in_weight.dtype,
|
139 |
+
device=conv_in_weight.device,)
|
140 |
+
new_conv_in_weight[:,:conv_in_weight.shape[1]] = conv_in_weight
|
141 |
+
self.conv_in.weight = nn.Parameter(
|
142 |
+
new_conv_in_weight.data,
|
143 |
+
requires_grad=conv_in_weight.requires_grad,)
|
144 |
+
self.conv_in.in_channels = full_in_channels
|
145 |
+
|
146 |
+
return self
|
147 |
+
|
148 |
+
def activate_adapters(self, adapter_names: Union[List[str], None] = None):
|
149 |
+
lora_layers = [layer for layer in self.modules() if isinstance(layer, LoraLayer)]
|
150 |
+
for lora_layer in lora_layers:
|
151 |
+
_adapter_names = adapter_names or list(lora_layer.scaling.keys())
|
152 |
+
lora_layer.set_adapter(_adapter_names)
|
153 |
+
|
154 |
+
def set_extra_condition_scale(self, scale: Union[float, List[float]] = 1.0):
|
155 |
+
if isinstance(scale, float):
|
156 |
+
scale = [scale] * len(self.config.extra_condition_names)
|
157 |
+
|
158 |
+
lora_layers = [layer for layer in self.modules() if isinstance(layer, LoraLayer)]
|
159 |
+
for s, n in zip(scale, self.config.extra_condition_names):
|
160 |
+
for lora_layer in lora_layers:
|
161 |
+
lora_layer.set_scale(n, s)
|
162 |
+
|
163 |
+
@property
|
164 |
+
def default_half_lora_target_modules(self) -> List[str]:
|
165 |
+
module_names = []
|
166 |
+
for name, module in self.named_modules():
|
167 |
+
if "conv_out" in name or "up_blocks" in name:
|
168 |
+
continue
|
169 |
+
if isinstance(module, (nn.Linear, nn.Conv2d)):
|
170 |
+
module_names.append(name)
|
171 |
+
return list(set(module_names))
|
172 |
+
|
173 |
+
@property
|
174 |
+
def default_full_lora_target_modules(self) -> List[str]:
|
175 |
+
module_names = []
|
176 |
+
for name, module in self.named_modules():
|
177 |
+
if isinstance(module, (nn.Linear, nn.Conv2d)):
|
178 |
+
module_names.append(name)
|
179 |
+
return list(set(module_names))
|
180 |
+
|
181 |
+
@property
|
182 |
+
def default_half_skip_attn_lora_target_modules(self) -> List[str]:
|
183 |
+
return [
|
184 |
+
module_name
|
185 |
+
for module_name in self.default_half_lora_target_modules
|
186 |
+
if all(
|
187 |
+
not module_name.endswith(attn_name)
|
188 |
+
for attn_name in
|
189 |
+
["to_k", "to_q", "to_v", "to_out.0"]
|
190 |
+
)
|
191 |
+
]
|
192 |
+
|
193 |
+
@property
|
194 |
+
def default_full_skip_attn_lora_target_modules(self) -> List[str]:
|
195 |
+
return [
|
196 |
+
module_name
|
197 |
+
for module_name in self.default_full_lora_target_modules
|
198 |
+
if all(
|
199 |
+
not module_name.endswith(attn_name)
|
200 |
+
for attn_name in
|
201 |
+
["to_k", "to_q", "to_v", "to_out.0"]
|
202 |
+
)
|
203 |
+
]
|
204 |
+
|
205 |
+
def forward(
|
206 |
+
self,
|
207 |
+
sample: torch.Tensor,
|
208 |
+
timestep: Union[torch.Tensor, float, int],
|
209 |
+
encoder_hidden_states: torch.Tensor,
|
210 |
+
class_labels: Optional[torch.Tensor] = None,
|
211 |
+
timestep_cond: Optional[torch.Tensor] = None,
|
212 |
+
attention_mask: Optional[torch.Tensor] = None,
|
213 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
214 |
+
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
|
215 |
+
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
|
216 |
+
mid_block_additional_residual: Optional[torch.Tensor] = None,
|
217 |
+
down_intrablock_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
|
218 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
219 |
+
extra_conditions: Optional[Union[torch.Tensor, List[torch.Tensor]]] = None,
|
220 |
+
return_dict: bool = True,
|
221 |
+
) -> Union[UNet2DConditionOutput, Tuple]:
|
222 |
+
if extra_conditions is not None:
|
223 |
+
if isinstance(extra_conditions, list):
|
224 |
+
extra_conditions = torch.cat(extra_conditions, dim=1)
|
225 |
+
sample = torch.cat([sample, extra_conditions], dim=1)
|
226 |
+
return super().forward(
|
227 |
+
sample=sample,
|
228 |
+
timestep=timestep,
|
229 |
+
encoder_hidden_states=encoder_hidden_states,
|
230 |
+
class_labels=class_labels,
|
231 |
+
timestep_cond=timestep_cond,
|
232 |
+
attention_mask=attention_mask,
|
233 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
234 |
+
added_cond_kwargs=added_cond_kwargs,
|
235 |
+
down_block_additional_residuals=down_block_additional_residuals,
|
236 |
+
mid_block_additional_residual=mid_block_additional_residual,
|
237 |
+
down_intrablock_additional_residuals=down_intrablock_additional_residuals,
|
238 |
+
encoder_attention_mask=encoder_attention_mask,
|
239 |
+
return_dict=return_dict,)
|
240 |
+
|
241 |
+
|
242 |
+
class PeftConv2dEx(PeftConv2d):
|
243 |
+
def reset_lora_parameters(self, adapter_name, init_lora_weights):
|
244 |
+
if init_lora_weights is False:
|
245 |
+
return
|
246 |
+
|
247 |
+
if isinstance(init_lora_weights, str) and "pissa" in init_lora_weights.lower():
|
248 |
+
if self.conv2d_pissa_init(adapter_name, init_lora_weights):
|
249 |
+
return
|
250 |
+
# Failed
|
251 |
+
init_lora_weights = "gaussian"
|
252 |
+
|
253 |
+
super(PeftConv2d, self).reset_lora_parameters(adapter_name, init_lora_weights)
|
254 |
+
|
255 |
+
def conv2d_pissa_init(self, adapter_name, init_lora_weights):
|
256 |
+
weight = weight_ori = self.get_base_layer().weight
|
257 |
+
weight = weight.flatten(start_dim=1)
|
258 |
+
if self.r[adapter_name] > weight.shape[0]:
|
259 |
+
return False
|
260 |
+
dtype = weight.dtype
|
261 |
+
if dtype not in [torch.float32, torch.float16, torch.bfloat16]:
|
262 |
+
raise TypeError(
|
263 |
+
"Please initialize PiSSA under float32, float16, or bfloat16. "
|
264 |
+
"Subsequently, re-quantize the residual model to help minimize quantization errors."
|
265 |
+
)
|
266 |
+
weight = weight.to(torch.float32)
|
267 |
+
|
268 |
+
if init_lora_weights == "pissa":
|
269 |
+
# USV^T = W <-> VSU^T = W^T, where W^T = weight.data in R^{out_channel, in_channel},
|
270 |
+
V, S, Uh = torch.linalg.svd(weight.data, full_matrices=False)
|
271 |
+
Vr = V[:, : self.r[adapter_name]]
|
272 |
+
Sr = S[: self.r[adapter_name]]
|
273 |
+
Sr /= self.scaling[adapter_name]
|
274 |
+
Uhr = Uh[: self.r[adapter_name]]
|
275 |
+
elif len(init_lora_weights.split("_niter_")) == 2:
|
276 |
+
Vr, Sr, Ur = svd_lowrank(
|
277 |
+
weight.data, self.r[adapter_name], niter=int(init_lora_weights.split("_niter_")[-1])
|
278 |
+
)
|
279 |
+
Sr /= self.scaling[adapter_name]
|
280 |
+
Uhr = Ur.t()
|
281 |
+
else:
|
282 |
+
raise ValueError(
|
283 |
+
f"init_lora_weights should be 'pissa' or 'pissa_niter_[number of iters]', got {init_lora_weights} instead."
|
284 |
+
)
|
285 |
+
|
286 |
+
lora_A = torch.diag(torch.sqrt(Sr)) @ Uhr
|
287 |
+
lora_B = Vr @ torch.diag(torch.sqrt(Sr))
|
288 |
+
self.lora_A[adapter_name].weight.data = lora_A.view([-1] + list(weight_ori.shape[1:]))
|
289 |
+
self.lora_B[adapter_name].weight.data = lora_B.view([-1, self.r[adapter_name]] + [1] * (weight_ori.ndim - 2))
|
290 |
+
weight = weight.data - self.scaling[adapter_name] * lora_B @ lora_A
|
291 |
+
weight = weight.to(dtype)
|
292 |
+
self.get_base_layer().weight.data = weight.view_as(weight_ori)
|
293 |
+
|
294 |
+
return True
|
295 |
+
|
296 |
+
|
297 |
+
# Patch peft conv2d
|
298 |
+
PeftConv2d.reset_lora_parameters = PeftConv2dEx.reset_lora_parameters
|
299 |
+
PeftConv2d.conv2d_pissa_init = PeftConv2dEx.conv2d_pissa_init
|