Spaces:
Running
on
T4
Running
on
T4
File size: 27,233 Bytes
561c629 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 |
"""
Efficient and Explicit Modelling of Image Hierarchies for Image Restoration
Image restoration transformers with global, regional, and local modelling
A clean version of the.
Shared buffers are used for relative_coords_table, relative_position_index, and attn_mask.
"""
import cv2
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision.transforms import ToTensor
from torchvision.utils import save_image
from fairscale.nn import checkpoint_wrapper
from omegaconf import OmegaConf
from timm.models.layers import to_2tuple, trunc_normal_
# Import files from local folder
import os, sys
root_path = os.path.abspath('.')
sys.path.append(root_path)
from architecture.grl_common import Upsample, UpsampleOneStep
from architecture.grl_common.mixed_attn_block_efficient import (
_get_stripe_info,
EfficientMixAttnTransformerBlock,
)
from architecture.grl_common.ops import (
bchw_to_blc,
blc_to_bchw,
calculate_mask,
calculate_mask_all,
get_relative_coords_table_all,
get_relative_position_index_simple,
)
from architecture.grl_common.swin_v1_block import (
build_last_conv,
)
class TransformerStage(nn.Module):
"""Transformer stage.
Args:
dim (int): Number of input channels.
input_resolution (tuple[int]): Input resolution.
depth (int): Number of blocks.
num_heads_window (list[int]): Number of window attention heads in different layers.
num_heads_stripe (list[int]): Number of stripe attention heads in different layers.
stripe_size (list[int]): Stripe size. Default: [8, 8]
stripe_groups (list[int]): Number of stripe groups. Default: [None, None].
stripe_shift (bool): whether to shift the stripes. This is used as an ablation study.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
qkv_proj_type (str): QKV projection type. Default: linear. Choices: linear, separable_conv.
anchor_proj_type (str): Anchor projection type. Default: avgpool. Choices: avgpool, maxpool, conv2d, separable_conv, patchmerging.
anchor_one_stage (bool): Whether to use one operator or multiple progressive operators to reduce feature map resolution. Default: True.
anchor_window_down_factor (int): The downscale factor used to get the anchors.
drop (float, optional): Dropout rate. Default: 0.0
attn_drop (float, optional): Attention dropout rate. Default: 0.0
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
pretrained_window_size (list[int]): pretrained window size. This is actually not used. Default: [0, 0].
pretrained_stripe_size (list[int]): pretrained stripe size. This is actually not used. Default: [0, 0].
conv_type: The convolutional block before residual connection.
init_method: initialization method of the weight parameters used to train large scale models.
Choices: n, normal -- Swin V1 init method.
l, layernorm -- Swin V2 init method. Zero the weight and bias in the post layer normalization layer.
r, res_rescale -- EDSR rescale method. Rescale the residual blocks with a scaling factor 0.1
w, weight_rescale -- MSRResNet rescale method. Rescale the weight parameter in residual blocks with a scaling factor 0.1
t, trunc_normal_ -- nn.Linear, trunc_normal; nn.Conv2d, weight_rescale
fairscale_checkpoint (bool): Whether to use fairscale checkpoint.
offload_to_cpu (bool): used by fairscale_checkpoint
args:
out_proj_type (str): Type of the output projection in the self-attention modules. Default: linear. Choices: linear, conv2d.
local_connection (bool): Whether to enable the local modelling module (two convs followed by Channel attention). For GRL base model, this is used. "local_connection": local_connection,
euclidean_dist (bool): use Euclidean distance or inner product as the similarity metric. An ablation study.
"""
def __init__(
self,
dim,
input_resolution,
depth,
num_heads_window,
num_heads_stripe,
window_size,
stripe_size,
stripe_groups,
stripe_shift,
mlp_ratio=4.0,
qkv_bias=True,
qkv_proj_type="linear",
anchor_proj_type="avgpool",
anchor_one_stage=True,
anchor_window_down_factor=1,
drop=0.0,
attn_drop=0.0,
drop_path=0.0,
norm_layer=nn.LayerNorm,
pretrained_window_size=[0, 0],
pretrained_stripe_size=[0, 0],
conv_type="1conv",
init_method="",
fairscale_checkpoint=False,
offload_to_cpu=False,
args=None,
):
super().__init__()
self.dim = dim
self.input_resolution = input_resolution
self.init_method = init_method
self.blocks = nn.ModuleList()
for i in range(depth):
block = EfficientMixAttnTransformerBlock(
dim=dim,
input_resolution=input_resolution,
num_heads_w=num_heads_window,
num_heads_s=num_heads_stripe,
window_size=window_size,
window_shift=i % 2 == 0,
stripe_size=stripe_size,
stripe_groups=stripe_groups,
stripe_type="H" if i % 2 == 0 else "W",
stripe_shift=i % 4 in [2, 3] if stripe_shift else False,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qkv_proj_type=qkv_proj_type,
anchor_proj_type=anchor_proj_type,
anchor_one_stage=anchor_one_stage,
anchor_window_down_factor=anchor_window_down_factor,
drop=drop,
attn_drop=attn_drop,
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
norm_layer=norm_layer,
pretrained_window_size=pretrained_window_size,
pretrained_stripe_size=pretrained_stripe_size,
res_scale=0.1 if init_method == "r" else 1.0,
args=args,
)
# print(fairscale_checkpoint, offload_to_cpu)
if fairscale_checkpoint:
block = checkpoint_wrapper(block, offload_to_cpu=offload_to_cpu)
self.blocks.append(block)
self.conv = build_last_conv(conv_type, dim)
def _init_weights(self):
for n, m in self.named_modules():
if self.init_method == "w":
if isinstance(m, (nn.Linear, nn.Conv2d)) and n.find("cpb_mlp") < 0:
print("nn.Linear and nn.Conv2d weight initilization")
m.weight.data *= 0.1
elif self.init_method == "l":
if isinstance(m, nn.LayerNorm):
print("nn.LayerNorm initialization")
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 0)
elif self.init_method.find("t") >= 0:
scale = 0.1 ** (len(self.init_method) - 1) * int(self.init_method[-1])
if isinstance(m, nn.Linear) and n.find("cpb_mlp") < 0:
trunc_normal_(m.weight, std=scale)
elif isinstance(m, nn.Conv2d):
m.weight.data *= 0.1
print(
"Initialization nn.Linear - trunc_normal; nn.Conv2d - weight rescale."
)
else:
raise NotImplementedError(
f"Parameter initialization method {self.init_method} not implemented in TransformerStage."
)
def forward(self, x, x_size, table_index_mask):
res = x
for blk in self.blocks:
res = blk(res, x_size, table_index_mask)
res = bchw_to_blc(self.conv(blc_to_bchw(res, x_size)))
return res + x
def flops(self):
pass
class GRL(nn.Module):
r"""Image restoration transformer with global, non-local, and local connections
Args:
img_size (int | list[int]): Input image size. Default 64
in_channels (int): Number of input image channels. Default: 3
out_channels (int): Number of output image channels. Default: None
embed_dim (int): Patch embedding dimension. Default: 96
upscale (int): Upscale factor. 2/3/4/8 for image SR, 1 for denoising and compress artifact reduction
img_range (float): Image range. 1. or 255.
upsampler (str): The reconstruction reconstruction module. 'pixelshuffle'/'pixelshuffledirect'/'nearest+conv'/None
depths (list[int]): Depth of each Swin Transformer layer.
num_heads_window (list[int]): Number of window attention heads in different layers.
num_heads_stripe (list[int]): Number of stripe attention heads in different layers.
window_size (int): Window size. Default: 8.
stripe_size (list[int]): Stripe size. Default: [8, 8]
stripe_groups (list[int]): Number of stripe groups. Default: [None, None].
stripe_shift (bool): whether to shift the stripes. This is used as an ablation study.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
qkv_proj_type (str): QKV projection type. Default: linear. Choices: linear, separable_conv.
anchor_proj_type (str): Anchor projection type. Default: avgpool. Choices: avgpool, maxpool, conv2d, separable_conv, patchmerging.
anchor_one_stage (bool): Whether to use one operator or multiple progressive operators to reduce feature map resolution. Default: True.
anchor_window_down_factor (int): The downscale factor used to get the anchors.
out_proj_type (str): Type of the output projection in the self-attention modules. Default: linear. Choices: linear, conv2d.
local_connection (bool): Whether to enable the local modelling module (two convs followed by Channel attention). For GRL base model, this is used.
drop_rate (float): Dropout rate. Default: 0
attn_drop_rate (float): Attention dropout rate. Default: 0
drop_path_rate (float): Stochastic depth rate. Default: 0.1
pretrained_window_size (list[int]): pretrained window size. This is actually not used. Default: [0, 0].
pretrained_stripe_size (list[int]): pretrained stripe size. This is actually not used. Default: [0, 0].
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
conv_type (str): The convolutional block before residual connection. Default: 1conv. Choices: 1conv, 3conv, 1conv1x1, linear
init_method: initialization method of the weight parameters used to train large scale models.
Choices: n, normal -- Swin V1 init method.
l, layernorm -- Swin V2 init method. Zero the weight and bias in the post layer normalization layer.
r, res_rescale -- EDSR rescale method. Rescale the residual blocks with a scaling factor 0.1
w, weight_rescale -- MSRResNet rescale method. Rescale the weight parameter in residual blocks with a scaling factor 0.1
t, trunc_normal_ -- nn.Linear, trunc_normal; nn.Conv2d, weight_rescale
fairscale_checkpoint (bool): Whether to use fairscale checkpoint.
offload_to_cpu (bool): used by fairscale_checkpoint
euclidean_dist (bool): use Euclidean distance or inner product as the similarity metric. An ablation study.
"""
def __init__(
self,
img_size=64,
in_channels=3,
out_channels=None,
embed_dim=96,
upscale=2,
img_range=1.0,
upsampler="",
depths=[6, 6, 6, 6, 6, 6],
num_heads_window=[3, 3, 3, 3, 3, 3],
num_heads_stripe=[3, 3, 3, 3, 3, 3],
window_size=8,
stripe_size=[8, 8], # used for stripe window attention
stripe_groups=[None, None],
stripe_shift=False,
mlp_ratio=4.0,
qkv_bias=True,
qkv_proj_type="linear",
anchor_proj_type="avgpool",
anchor_one_stage=True,
anchor_window_down_factor=1,
out_proj_type="linear",
local_connection=False,
drop_rate=0.0,
attn_drop_rate=0.0,
drop_path_rate=0.1,
norm_layer=nn.LayerNorm,
pretrained_window_size=[0, 0],
pretrained_stripe_size=[0, 0],
conv_type="1conv",
init_method="n", # initialization method of the weight parameters used to train large scale models.
fairscale_checkpoint=False, # fairscale activation checkpointing
offload_to_cpu=False,
euclidean_dist=False,
**kwargs,
):
super(GRL, self).__init__()
# Process the input arguments
out_channels = out_channels or in_channels
self.in_channels = in_channels
self.out_channels = out_channels
num_out_feats = 64
self.embed_dim = embed_dim
self.upscale = upscale
self.upsampler = upsampler
self.img_range = img_range
if in_channels == 3:
rgb_mean = (0.4488, 0.4371, 0.4040)
self.mean = torch.Tensor(rgb_mean).view(1, 3, 1, 1)
else:
self.mean = torch.zeros(1, 1, 1, 1)
max_stripe_size = max([0 if s is None else s for s in stripe_size])
max_stripe_groups = max([0 if s is None else s for s in stripe_groups])
max_stripe_groups *= anchor_window_down_factor
self.pad_size = max(window_size, max_stripe_size, max_stripe_groups)
# if max_stripe_size >= window_size:
# self.pad_size *= anchor_window_down_factor
# if stripe_groups[0] is None and stripe_groups[1] is None:
# self.pad_size = max(stripe_size)
# else:
# self.pad_size = window_size
self.input_resolution = to_2tuple(img_size)
self.window_size = to_2tuple(window_size)
self.shift_size = [w // 2 for w in self.window_size]
self.stripe_size = stripe_size
self.stripe_groups = stripe_groups
self.pretrained_window_size = pretrained_window_size
self.pretrained_stripe_size = pretrained_stripe_size
self.anchor_window_down_factor = anchor_window_down_factor
# Head of the network. First convolution.
self.conv_first = nn.Conv2d(in_channels, embed_dim, 3, 1, 1)
# Body of the network
self.norm_start = norm_layer(embed_dim)
self.pos_drop = nn.Dropout(p=drop_rate)
# stochastic depth
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]
# stochastic depth decay rule
args = OmegaConf.create(
{
"out_proj_type": out_proj_type,
"local_connection": local_connection,
"euclidean_dist": euclidean_dist,
}
)
for k, v in self.set_table_index_mask(self.input_resolution).items():
self.register_buffer(k, v)
self.layers = nn.ModuleList()
for i in range(len(depths)):
layer = TransformerStage(
dim=embed_dim,
input_resolution=self.input_resolution,
depth=depths[i],
num_heads_window=num_heads_window[i],
num_heads_stripe=num_heads_stripe[i],
window_size=self.window_size,
stripe_size=stripe_size,
stripe_groups=stripe_groups,
stripe_shift=stripe_shift,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qkv_proj_type=qkv_proj_type,
anchor_proj_type=anchor_proj_type,
anchor_one_stage=anchor_one_stage,
anchor_window_down_factor=anchor_window_down_factor,
drop=drop_rate,
attn_drop=attn_drop_rate,
drop_path=dpr[
sum(depths[:i]) : sum(depths[: i + 1])
], # no impact on SR results
norm_layer=norm_layer,
pretrained_window_size=pretrained_window_size,
pretrained_stripe_size=pretrained_stripe_size,
conv_type=conv_type,
init_method=init_method,
fairscale_checkpoint=fairscale_checkpoint,
offload_to_cpu=offload_to_cpu,
args=args,
)
self.layers.append(layer)
self.norm_end = norm_layer(embed_dim)
# Tail of the network
self.conv_after_body = build_last_conv(conv_type, embed_dim)
#####################################################################################################
################################ 3, high quality image reconstruction ################################
if self.upsampler == "pixelshuffle":
# for classical SR
self.conv_before_upsample = nn.Sequential(
nn.Conv2d(embed_dim, num_out_feats, 3, 1, 1), nn.LeakyReLU(inplace=True)
)
self.upsample = Upsample(upscale, num_out_feats)
self.conv_last = nn.Conv2d(num_out_feats, out_channels, 3, 1, 1)
elif self.upsampler == "pixelshuffledirect":
# for lightweight SR (to save parameters)
self.upsample = UpsampleOneStep(
upscale,
embed_dim,
out_channels,
)
elif self.upsampler == "nearest+conv":
# for real-world SR (less artifacts)
assert self.upscale == 4, "only support x4 now."
self.conv_before_upsample = nn.Sequential(
nn.Conv2d(embed_dim, num_out_feats, 3, 1, 1), nn.LeakyReLU(inplace=True)
)
self.conv_up1 = nn.Conv2d(num_out_feats, num_out_feats, 3, 1, 1)
self.conv_up2 = nn.Conv2d(num_out_feats, num_out_feats, 3, 1, 1)
self.conv_hr = nn.Conv2d(num_out_feats, num_out_feats, 3, 1, 1)
self.conv_last = nn.Conv2d(num_out_feats, out_channels, 3, 1, 1)
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
else:
# for image denoising and JPEG compression artifact reduction
self.conv_last = nn.Conv2d(embed_dim, out_channels, 3, 1, 1)
self.apply(self._init_weights)
if init_method in ["l", "w"] or init_method.find("t") >= 0:
for layer in self.layers:
layer._init_weights()
def set_table_index_mask(self, x_size):
"""
Two used cases:
1) At initialization: set the shared buffers.
2) During forward pass: get the new buffers if the resolution of the input changes
"""
# ss - stripe_size, sss - stripe_shift_size
ss, sss = _get_stripe_info(self.stripe_size, self.stripe_groups, True, x_size)
df = self.anchor_window_down_factor
table_w = get_relative_coords_table_all(
self.window_size, self.pretrained_window_size
)
table_sh = get_relative_coords_table_all(ss, self.pretrained_stripe_size, df)
table_sv = get_relative_coords_table_all(
ss[::-1], self.pretrained_stripe_size, df
)
index_w = get_relative_position_index_simple(self.window_size)
index_sh_a2w = get_relative_position_index_simple(ss, df, False)
index_sh_w2a = get_relative_position_index_simple(ss, df, True)
index_sv_a2w = get_relative_position_index_simple(ss[::-1], df, False)
index_sv_w2a = get_relative_position_index_simple(ss[::-1], df, True)
mask_w = calculate_mask(x_size, self.window_size, self.shift_size)
mask_sh_a2w = calculate_mask_all(x_size, ss, sss, df, False)
mask_sh_w2a = calculate_mask_all(x_size, ss, sss, df, True)
mask_sv_a2w = calculate_mask_all(x_size, ss[::-1], sss[::-1], df, False)
mask_sv_w2a = calculate_mask_all(x_size, ss[::-1], sss[::-1], df, True)
return {
"table_w": table_w,
"table_sh": table_sh,
"table_sv": table_sv,
"index_w": index_w,
"index_sh_a2w": index_sh_a2w,
"index_sh_w2a": index_sh_w2a,
"index_sv_a2w": index_sv_a2w,
"index_sv_w2a": index_sv_w2a,
"mask_w": mask_w,
"mask_sh_a2w": mask_sh_a2w,
"mask_sh_w2a": mask_sh_w2a,
"mask_sv_a2w": mask_sv_a2w,
"mask_sv_w2a": mask_sv_w2a,
}
def get_table_index_mask(self, device=None, input_resolution=None):
# Used during forward pass
if input_resolution == self.input_resolution:
return {
"table_w": self.table_w,
"table_sh": self.table_sh,
"table_sv": self.table_sv,
"index_w": self.index_w,
"index_sh_a2w": self.index_sh_a2w,
"index_sh_w2a": self.index_sh_w2a,
"index_sv_a2w": self.index_sv_a2w,
"index_sv_w2a": self.index_sv_w2a,
"mask_w": self.mask_w,
"mask_sh_a2w": self.mask_sh_a2w,
"mask_sh_w2a": self.mask_sh_w2a,
"mask_sv_a2w": self.mask_sv_a2w,
"mask_sv_w2a": self.mask_sv_w2a,
}
else:
table_index_mask = self.set_table_index_mask(input_resolution)
for k, v in table_index_mask.items():
table_index_mask[k] = v.to(device)
return table_index_mask
def _init_weights(self, m):
if isinstance(m, nn.Linear):
# Only used to initialize linear layers
# weight_shape = m.weight.shape
# if weight_shape[0] > 256 and weight_shape[1] > 256:
# std = 0.004
# else:
# std = 0.02
# print(f"Standard deviation during initialization {std}.")
trunc_normal_(m.weight, std=0.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
@torch.jit.ignore
def no_weight_decay(self):
return {"absolute_pos_embed"}
@torch.jit.ignore
def no_weight_decay_keywords(self):
return {"relative_position_bias_table"}
def check_image_size(self, x):
_, _, h, w = x.size()
mod_pad_h = (self.pad_size - h % self.pad_size) % self.pad_size
mod_pad_w = (self.pad_size - w % self.pad_size) % self.pad_size
# print("padding size", h, w, self.pad_size, mod_pad_h, mod_pad_w)
try:
x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h), "reflect")
except BaseException:
x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h), "constant")
return x
def forward_features(self, x):
x_size = (x.shape[2], x.shape[3])
x = bchw_to_blc(x)
x = self.norm_start(x)
x = self.pos_drop(x)
table_index_mask = self.get_table_index_mask(x.device, x_size)
for layer in self.layers:
x = layer(x, x_size, table_index_mask)
x = self.norm_end(x) # B L C
x = blc_to_bchw(x, x_size)
return x
def forward(self, x):
H, W = x.shape[2:]
x = self.check_image_size(x)
self.mean = self.mean.type_as(x)
x = (x - self.mean) * self.img_range
if self.upsampler == "pixelshuffle":
# for classical SR
x = self.conv_first(x)
x = self.conv_after_body(self.forward_features(x)) + x
x = self.conv_before_upsample(x)
x = self.conv_last(self.upsample(x))
elif self.upsampler == "pixelshuffledirect":
# for lightweight SR
x = self.conv_first(x)
x = self.conv_after_body(self.forward_features(x)) + x
x = self.upsample(x)
elif self.upsampler == "nearest+conv":
# for real-world SR (claimed to have less artifacts)
x = self.conv_first(x)
x = self.conv_after_body(self.forward_features(x)) + x
x = self.conv_before_upsample(x)
x = self.lrelu(
self.conv_up1(
torch.nn.functional.interpolate(x, scale_factor=2, mode="nearest")
)
)
x = self.lrelu(
self.conv_up2(
torch.nn.functional.interpolate(x, scale_factor=2, mode="nearest")
)
)
x = self.conv_last(self.lrelu(self.conv_hr(x)))
else:
# for image denoising and JPEG compression artifact reduction
x_first = self.conv_first(x)
res = self.conv_after_body(self.forward_features(x_first)) + x_first
if self.in_channels == self.out_channels:
x = x + self.conv_last(res)
else:
x = self.conv_last(res)
x = x / self.img_range + self.mean
return x[:, :, : H * self.upscale, : W * self.upscale]
def flops(self):
pass
def convert_checkpoint(self, state_dict):
for k in list(state_dict.keys()):
if (
k.find("relative_coords_table") >= 0
or k.find("relative_position_index") >= 0
or k.find("attn_mask") >= 0
or k.find("model.table_") >= 0
or k.find("model.index_") >= 0
or k.find("model.mask_") >= 0
# or k.find(".upsample.") >= 0
):
state_dict.pop(k)
print(k)
return state_dict
if __name__ == "__main__":
# The version of GRL we use
model = GRL(
upscale = 4,
img_size = 64,
window_size = 8,
depths = [4, 4, 4, 4],
embed_dim = 64,
num_heads_window = [2, 2, 2, 2],
num_heads_stripe = [2, 2, 2, 2],
mlp_ratio = 2,
qkv_proj_type = "linear",
anchor_proj_type = "avgpool",
anchor_window_down_factor = 2,
out_proj_type = "linear",
conv_type = "1conv",
upsampler = "nearest+conv", # Change
).cuda()
# Parameter analysis
num_params = 0
for p in model.parameters():
if p.requires_grad:
num_params += p.numel()
print(f"Number of parameters {num_params / 10 ** 6: 0.2f}")
# Print param
for name, param in model.named_parameters():
print(name, param.dtype)
# Count the number of FLOPs to double check
x = torch.randn((1, 3, 180, 180)).cuda() # Don't use input size that is too big (we don't have @torch.no_grad here)
x = model(x)
print("output size is ", x.shape)
|