Spaces:
Running
on
T4
Running
on
T4
''' | |
DAT network from https://github.com/zhengchen1999/DAT (https://openaccess.thecvf.com/content/ICCV2023/papers/Chen_Dual_Aggregation_Transformer_for_Image_Super-Resolution_ICCV_2023_paper.pdf) | |
''' | |
import torch | |
import torch.nn as nn | |
import torch.utils.checkpoint as checkpoint | |
from torch import Tensor | |
from torch.nn import functional as F | |
from timm.models.layers import DropPath, trunc_normal_ | |
from einops.layers.torch import Rearrange | |
from einops import rearrange | |
import math | |
import numpy as np | |
def img2windows(img, H_sp, W_sp): | |
""" | |
Input: Image (B, C, H, W) | |
Output: Window Partition (B', N, C) | |
""" | |
B, C, H, W = img.shape | |
img_reshape = img.view(B, C, H // H_sp, H_sp, W // W_sp, W_sp) | |
img_perm = img_reshape.permute(0, 2, 4, 3, 5, 1).contiguous().reshape(-1, H_sp* W_sp, C) | |
return img_perm | |
def windows2img(img_splits_hw, H_sp, W_sp, H, W): | |
""" | |
Input: Window Partition (B', N, C) | |
Output: Image (B, H, W, C) | |
""" | |
B = int(img_splits_hw.shape[0] / (H * W / H_sp / W_sp)) | |
img = img_splits_hw.view(B, H // H_sp, W // W_sp, H_sp, W_sp, -1) | |
img = img.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) | |
return img | |
class SpatialGate(nn.Module): | |
""" Spatial-Gate. | |
Args: | |
dim (int): Half of input channels. | |
""" | |
def __init__(self, dim): | |
super().__init__() | |
self.norm = nn.LayerNorm(dim) | |
self.conv = nn.Conv2d(dim, dim, kernel_size=3, stride=1, padding=1, groups=dim) # DW Conv | |
def forward(self, x, H, W): | |
# Split | |
x1, x2 = x.chunk(2, dim = -1) | |
B, N, C = x.shape | |
x2 = self.conv(self.norm(x2).transpose(1, 2).contiguous().view(B, C//2, H, W)).flatten(2).transpose(-1, -2).contiguous() | |
return x1 * x2 | |
class SGFN(nn.Module): | |
""" Spatial-Gate Feed-Forward Network. | |
Args: | |
in_features (int): Number of input channels. | |
hidden_features (int | None): Number of hidden channels. Default: None | |
out_features (int | None): Number of output channels. Default: None | |
act_layer (nn.Module): Activation layer. Default: nn.GELU | |
drop (float): Dropout rate. Default: 0.0 | |
""" | |
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): | |
super().__init__() | |
out_features = out_features or in_features | |
hidden_features = hidden_features or in_features | |
self.fc1 = nn.Linear(in_features, hidden_features) | |
self.act = act_layer() | |
self.sg = SpatialGate(hidden_features//2) | |
self.fc2 = nn.Linear(hidden_features//2, out_features) | |
self.drop = nn.Dropout(drop) | |
def forward(self, x, H, W): | |
""" | |
Input: x: (B, H*W, C), H, W | |
Output: x: (B, H*W, C) | |
""" | |
x = self.fc1(x) | |
x = self.act(x) | |
x = self.drop(x) | |
x = self.sg(x, H, W) | |
x = self.drop(x) | |
x = self.fc2(x) | |
x = self.drop(x) | |
return x | |
class DynamicPosBias(nn.Module): | |
# The implementation builds on Crossformer code https://github.com/cheerss/CrossFormer/blob/main/models/crossformer.py | |
""" Dynamic Relative Position Bias. | |
Args: | |
dim (int): Number of input channels. | |
num_heads (int): Number of attention heads. | |
residual (bool): If True, use residual strage to connect conv. | |
""" | |
def __init__(self, dim, num_heads, residual): | |
super().__init__() | |
self.residual = residual | |
self.num_heads = num_heads | |
self.pos_dim = dim // 4 | |
self.pos_proj = nn.Linear(2, self.pos_dim) | |
self.pos1 = nn.Sequential( | |
nn.LayerNorm(self.pos_dim), | |
nn.ReLU(inplace=True), | |
nn.Linear(self.pos_dim, self.pos_dim), | |
) | |
self.pos2 = nn.Sequential( | |
nn.LayerNorm(self.pos_dim), | |
nn.ReLU(inplace=True), | |
nn.Linear(self.pos_dim, self.pos_dim) | |
) | |
self.pos3 = nn.Sequential( | |
nn.LayerNorm(self.pos_dim), | |
nn.ReLU(inplace=True), | |
nn.Linear(self.pos_dim, self.num_heads) | |
) | |
def forward(self, biases): | |
if self.residual: | |
pos = self.pos_proj(biases) # 2Gh-1 * 2Gw-1, heads | |
pos = pos + self.pos1(pos) | |
pos = pos + self.pos2(pos) | |
pos = self.pos3(pos) | |
else: | |
pos = self.pos3(self.pos2(self.pos1(self.pos_proj(biases)))) | |
return pos | |
class Spatial_Attention(nn.Module): | |
""" Spatial Window Self-Attention. | |
It supports rectangle window (containing square window). | |
Args: | |
dim (int): Number of input channels. | |
idx (int): The indentix of window. (0/1) | |
split_size (tuple(int)): Height and Width of spatial window. | |
dim_out (int | None): The dimension of the attention output. Default: None | |
num_heads (int): Number of attention heads. Default: 6 | |
attn_drop (float): Dropout ratio of attention weight. Default: 0.0 | |
proj_drop (float): Dropout ratio of output. Default: 0.0 | |
qk_scale (float | None): Override default qk scale of head_dim ** -0.5 if set | |
position_bias (bool): The dynamic relative position bias. Default: True | |
""" | |
def __init__(self, dim, idx, split_size=[8,8], dim_out=None, num_heads=6, attn_drop=0., proj_drop=0., qk_scale=None, position_bias=True): | |
super().__init__() | |
self.dim = dim | |
self.dim_out = dim_out or dim | |
self.split_size = split_size | |
self.num_heads = num_heads | |
self.idx = idx | |
self.position_bias = position_bias | |
head_dim = dim // num_heads | |
self.scale = qk_scale or head_dim ** -0.5 | |
if idx == 0: | |
H_sp, W_sp = self.split_size[0], self.split_size[1] | |
elif idx == 1: | |
W_sp, H_sp = self.split_size[0], self.split_size[1] | |
else: | |
print ("ERROR MODE", idx) | |
exit(0) | |
self.H_sp = H_sp | |
self.W_sp = W_sp | |
if self.position_bias: | |
self.pos = DynamicPosBias(self.dim // 4, self.num_heads, residual=False) | |
# generate mother-set | |
position_bias_h = torch.arange(1 - self.H_sp, self.H_sp) | |
position_bias_w = torch.arange(1 - self.W_sp, self.W_sp) | |
biases = torch.stack(torch.meshgrid([position_bias_h, position_bias_w])) | |
biases = biases.flatten(1).transpose(0, 1).contiguous().float() | |
self.register_buffer('rpe_biases', biases) | |
# get pair-wise relative position index for each token inside the window | |
coords_h = torch.arange(self.H_sp) | |
coords_w = torch.arange(self.W_sp) | |
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) | |
coords_flatten = torch.flatten(coords, 1) | |
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] | |
relative_coords = relative_coords.permute(1, 2, 0).contiguous() | |
relative_coords[:, :, 0] += self.H_sp - 1 | |
relative_coords[:, :, 1] += self.W_sp - 1 | |
relative_coords[:, :, 0] *= 2 * self.W_sp - 1 | |
relative_position_index = relative_coords.sum(-1) | |
self.register_buffer('relative_position_index', relative_position_index) | |
self.attn_drop = nn.Dropout(attn_drop) | |
def im2win(self, x, H, W): | |
B, N, C = x.shape | |
x = x.transpose(-2,-1).contiguous().view(B, C, H, W) | |
x = img2windows(x, self.H_sp, self.W_sp) | |
x = x.reshape(-1, self.H_sp* self.W_sp, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3).contiguous() | |
return x | |
def forward(self, qkv, H, W, mask=None): | |
""" | |
Input: qkv: (B, 3*L, C), H, W, mask: (B, N, N), N is the window size | |
Output: x (B, H, W, C) | |
""" | |
q,k,v = qkv[0], qkv[1], qkv[2] | |
B, L, C = q.shape | |
assert L == H * W, "flatten img_tokens has wrong size" | |
# partition the q,k,v, image to window | |
q = self.im2win(q, H, W) | |
k = self.im2win(k, H, W) | |
v = self.im2win(v, H, W) | |
q = q * self.scale | |
attn = (q @ k.transpose(-2, -1)) # B head N C @ B head C N --> B head N N | |
# calculate drpe | |
if self.position_bias: | |
pos = self.pos(self.rpe_biases) | |
# select position bias | |
relative_position_bias = pos[self.relative_position_index.view(-1)].view( | |
self.H_sp * self.W_sp, self.H_sp * self.W_sp, -1) | |
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() | |
attn = attn + relative_position_bias.unsqueeze(0) | |
N = attn.shape[3] | |
# use mask for shift window | |
if mask is not None: | |
nW = mask.shape[0] | |
attn = attn.view(B, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0) | |
attn = attn.view(-1, self.num_heads, N, N) | |
attn = nn.functional.softmax(attn, dim=-1, dtype=attn.dtype) | |
attn = self.attn_drop(attn) | |
x = (attn @ v) | |
x = x.transpose(1, 2).reshape(-1, self.H_sp* self.W_sp, C) # B head N N @ B head N C | |
# merge the window, window to image | |
x = windows2img(x, self.H_sp, self.W_sp, H, W) # B H' W' C | |
return x | |
class Adaptive_Spatial_Attention(nn.Module): | |
# The implementation builds on CAT code https://github.com/Zhengchen1999/CAT | |
""" Adaptive Spatial Self-Attention | |
Args: | |
dim (int): Number of input channels. | |
num_heads (int): Number of attention heads. Default: 6 | |
split_size (tuple(int)): Height and Width of spatial window. | |
shift_size (tuple(int)): Shift size for spatial window. | |
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True | |
qk_scale (float | None): Override default qk scale of head_dim ** -0.5 if set. | |
drop (float): Dropout rate. Default: 0.0 | |
attn_drop (float): Attention dropout rate. Default: 0.0 | |
rg_idx (int): The indentix of Residual Group (RG) | |
b_idx (int): The indentix of Block in each RG | |
""" | |
def __init__(self, dim, num_heads, | |
reso=64, split_size=[8,8], shift_size=[1,2], qkv_bias=False, qk_scale=None, | |
drop=0., attn_drop=0., rg_idx=0, b_idx=0): | |
super().__init__() | |
self.dim = dim | |
self.num_heads = num_heads | |
self.split_size = split_size | |
self.shift_size = shift_size | |
self.b_idx = b_idx | |
self.rg_idx = rg_idx | |
self.patches_resolution = reso | |
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
assert 0 <= self.shift_size[0] < self.split_size[0], "shift_size must in 0-split_size0" | |
assert 0 <= self.shift_size[1] < self.split_size[1], "shift_size must in 0-split_size1" | |
self.branch_num = 2 | |
self.proj = nn.Linear(dim, dim) | |
self.proj_drop = nn.Dropout(drop) | |
self.attns = nn.ModuleList([ | |
Spatial_Attention( | |
dim//2, idx = i, | |
split_size=split_size, num_heads=num_heads//2, dim_out=dim//2, | |
qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, position_bias=True) | |
for i in range(self.branch_num)]) | |
if (self.rg_idx % 2 == 0 and self.b_idx > 0 and (self.b_idx - 2) % 4 == 0) or (self.rg_idx % 2 != 0 and self.b_idx % 4 == 0): | |
attn_mask = self.calculate_mask(self.patches_resolution, self.patches_resolution) | |
self.register_buffer("attn_mask_0", attn_mask[0]) | |
self.register_buffer("attn_mask_1", attn_mask[1]) | |
else: | |
attn_mask = None | |
self.register_buffer("attn_mask_0", None) | |
self.register_buffer("attn_mask_1", None) | |
self.dwconv = nn.Sequential( | |
nn.Conv2d(dim, dim, kernel_size=3, stride=1, padding=1,groups=dim), | |
nn.BatchNorm2d(dim), | |
nn.GELU() | |
) | |
self.channel_interaction = nn.Sequential( | |
nn.AdaptiveAvgPool2d(1), | |
nn.Conv2d(dim, dim // 8, kernel_size=1), | |
nn.BatchNorm2d(dim // 8), | |
nn.GELU(), | |
nn.Conv2d(dim // 8, dim, kernel_size=1), | |
) | |
self.spatial_interaction = nn.Sequential( | |
nn.Conv2d(dim, dim // 16, kernel_size=1), | |
nn.BatchNorm2d(dim // 16), | |
nn.GELU(), | |
nn.Conv2d(dim // 16, 1, kernel_size=1) | |
) | |
def calculate_mask(self, H, W): | |
# The implementation builds on Swin Transformer code https://github.com/microsoft/Swin-Transformer/blob/main/models/swin_transformer.py | |
# calculate attention mask for shift window | |
img_mask_0 = torch.zeros((1, H, W, 1)) # 1 H W 1 idx=0 | |
img_mask_1 = torch.zeros((1, H, W, 1)) # 1 H W 1 idx=1 | |
h_slices_0 = (slice(0, -self.split_size[0]), | |
slice(-self.split_size[0], -self.shift_size[0]), | |
slice(-self.shift_size[0], None)) | |
w_slices_0 = (slice(0, -self.split_size[1]), | |
slice(-self.split_size[1], -self.shift_size[1]), | |
slice(-self.shift_size[1], None)) | |
h_slices_1 = (slice(0, -self.split_size[1]), | |
slice(-self.split_size[1], -self.shift_size[1]), | |
slice(-self.shift_size[1], None)) | |
w_slices_1 = (slice(0, -self.split_size[0]), | |
slice(-self.split_size[0], -self.shift_size[0]), | |
slice(-self.shift_size[0], None)) | |
cnt = 0 | |
for h in h_slices_0: | |
for w in w_slices_0: | |
img_mask_0[:, h, w, :] = cnt | |
cnt += 1 | |
cnt = 0 | |
for h in h_slices_1: | |
for w in w_slices_1: | |
img_mask_1[:, h, w, :] = cnt | |
cnt += 1 | |
# calculate mask for window-0 | |
img_mask_0 = img_mask_0.view(1, H // self.split_size[0], self.split_size[0], W // self.split_size[1], self.split_size[1], 1) | |
img_mask_0 = img_mask_0.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, self.split_size[0], self.split_size[1], 1) # nW, sw[0], sw[1], 1 | |
mask_windows_0 = img_mask_0.view(-1, self.split_size[0] * self.split_size[1]) | |
attn_mask_0 = mask_windows_0.unsqueeze(1) - mask_windows_0.unsqueeze(2) | |
attn_mask_0 = attn_mask_0.masked_fill(attn_mask_0 != 0, float(-100.0)).masked_fill(attn_mask_0 == 0, float(0.0)) | |
# calculate mask for window-1 | |
img_mask_1 = img_mask_1.view(1, H // self.split_size[1], self.split_size[1], W // self.split_size[0], self.split_size[0], 1) | |
img_mask_1 = img_mask_1.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, self.split_size[1], self.split_size[0], 1) # nW, sw[1], sw[0], 1 | |
mask_windows_1 = img_mask_1.view(-1, self.split_size[1] * self.split_size[0]) | |
attn_mask_1 = mask_windows_1.unsqueeze(1) - mask_windows_1.unsqueeze(2) | |
attn_mask_1 = attn_mask_1.masked_fill(attn_mask_1 != 0, float(-100.0)).masked_fill(attn_mask_1 == 0, float(0.0)) | |
return attn_mask_0, attn_mask_1 | |
def forward(self, x, H, W): | |
""" | |
Input: x: (B, H*W, C), H, W | |
Output: x: (B, H*W, C) | |
""" | |
B, L, C = x.shape | |
assert L == H * W, "flatten img_tokens has wrong size" | |
qkv = self.qkv(x).reshape(B, -1, 3, C).permute(2, 0, 1, 3) # 3, B, HW, C | |
# V without partition | |
v = qkv[2].transpose(-2,-1).contiguous().view(B, C, H, W) | |
# image padding | |
max_split_size = max(self.split_size[0], self.split_size[1]) | |
pad_l = pad_t = 0 | |
pad_r = (max_split_size - W % max_split_size) % max_split_size | |
pad_b = (max_split_size - H % max_split_size) % max_split_size | |
qkv = qkv.reshape(3*B, H, W, C).permute(0, 3, 1, 2) # 3B C H W | |
qkv = F.pad(qkv, (pad_l, pad_r, pad_t, pad_b)).reshape(3, B, C, -1).transpose(-2, -1) # l r t b | |
_H = pad_b + H | |
_W = pad_r + W | |
_L = _H * _W | |
# window-0 and window-1 on split channels [C/2, C/2]; for square windows (e.g., 8x8), window-0 and window-1 can be merged | |
# shift in block: (0, 4, 8, ...), (2, 6, 10, ...), (0, 4, 8, ...), (2, 6, 10, ...), ... | |
if (self.rg_idx % 2 == 0 and self.b_idx > 0 and (self.b_idx - 2) % 4 == 0) or (self.rg_idx % 2 != 0 and self.b_idx % 4 == 0): | |
qkv = qkv.view(3, B, _H, _W, C) | |
qkv_0 = torch.roll(qkv[:,:,:,:,:C//2], shifts=(-self.shift_size[0], -self.shift_size[1]), dims=(2, 3)) | |
qkv_0 = qkv_0.view(3, B, _L, C//2) | |
qkv_1 = torch.roll(qkv[:,:,:,:,C//2:], shifts=(-self.shift_size[1], -self.shift_size[0]), dims=(2, 3)) | |
qkv_1 = qkv_1.view(3, B, _L, C//2) | |
if self.patches_resolution != _H or self.patches_resolution != _W: | |
mask_tmp = self.calculate_mask(_H, _W) | |
x1_shift = self.attns[0](qkv_0, _H, _W, mask=mask_tmp[0].to(x.device)) | |
x2_shift = self.attns[1](qkv_1, _H, _W, mask=mask_tmp[1].to(x.device)) | |
else: | |
x1_shift = self.attns[0](qkv_0, _H, _W, mask=self.attn_mask_0) | |
x2_shift = self.attns[1](qkv_1, _H, _W, mask=self.attn_mask_1) | |
x1 = torch.roll(x1_shift, shifts=(self.shift_size[0], self.shift_size[1]), dims=(1, 2)) | |
x2 = torch.roll(x2_shift, shifts=(self.shift_size[1], self.shift_size[0]), dims=(1, 2)) | |
x1 = x1[:, :H, :W, :].reshape(B, L, C//2) | |
x2 = x2[:, :H, :W, :].reshape(B, L, C//2) | |
# attention output | |
attened_x = torch.cat([x1,x2], dim=2) | |
else: | |
x1 = self.attns[0](qkv[:,:,:,:C//2], _H, _W)[:, :H, :W, :].reshape(B, L, C//2) | |
x2 = self.attns[1](qkv[:,:,:,C//2:], _H, _W)[:, :H, :W, :].reshape(B, L, C//2) | |
# attention output | |
attened_x = torch.cat([x1,x2], dim=2) | |
# convolution output | |
conv_x = self.dwconv(v) | |
# Adaptive Interaction Module (AIM) | |
# C-Map (before sigmoid) | |
channel_map = self.channel_interaction(conv_x).permute(0, 2, 3, 1).contiguous().view(B, 1, C) | |
# S-Map (before sigmoid) | |
attention_reshape = attened_x.transpose(-2,-1).contiguous().view(B, C, H, W) | |
spatial_map = self.spatial_interaction(attention_reshape) | |
# C-I | |
attened_x = attened_x * torch.sigmoid(channel_map) | |
# S-I | |
conv_x = torch.sigmoid(spatial_map) * conv_x | |
conv_x = conv_x.permute(0, 2, 3, 1).contiguous().view(B, L, C) | |
x = attened_x + conv_x | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
class Adaptive_Channel_Attention(nn.Module): | |
# The implementation builds on XCiT code https://github.com/facebookresearch/xcit | |
""" Adaptive Channel Self-Attention | |
Args: | |
dim (int): Number of input channels. | |
num_heads (int): Number of attention heads. Default: 6 | |
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True | |
qk_scale (float | None): Override default qk scale of head_dim ** -0.5 if set. | |
attn_drop (float): Attention dropout rate. Default: 0.0 | |
drop_path (float): Stochastic depth rate. Default: 0.0 | |
""" | |
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.): | |
super().__init__() | |
self.num_heads = num_heads | |
self.temperature = nn.Parameter(torch.ones(num_heads, 1, 1)) | |
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.proj = nn.Linear(dim, dim) | |
self.proj_drop = nn.Dropout(proj_drop) | |
self.dwconv = nn.Sequential( | |
nn.Conv2d(dim, dim, kernel_size=3, stride=1, padding=1,groups=dim), | |
nn.BatchNorm2d(dim), | |
nn.GELU() | |
) | |
self.channel_interaction = nn.Sequential( | |
nn.AdaptiveAvgPool2d(1), | |
nn.Conv2d(dim, dim // 8, kernel_size=1), | |
nn.BatchNorm2d(dim // 8), | |
nn.GELU(), | |
nn.Conv2d(dim // 8, dim, kernel_size=1), | |
) | |
self.spatial_interaction = nn.Sequential( | |
nn.Conv2d(dim, dim // 16, kernel_size=1), | |
nn.BatchNorm2d(dim // 16), | |
nn.GELU(), | |
nn.Conv2d(dim // 16, 1, kernel_size=1) | |
) | |
def forward(self, x, H, W): | |
""" | |
Input: x: (B, H*W, C), H, W | |
Output: x: (B, H*W, C) | |
""" | |
B, N, C = x.shape | |
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads) | |
qkv = qkv.permute(2, 0, 3, 1, 4) | |
q, k, v = qkv[0], qkv[1], qkv[2] | |
q = q.transpose(-2, -1) | |
k = k.transpose(-2, -1) | |
v = v.transpose(-2, -1) | |
v_ = v.reshape(B, C, N).contiguous().view(B, C, H, W) | |
q = torch.nn.functional.normalize(q, dim=-1) | |
k = torch.nn.functional.normalize(k, dim=-1) | |
attn = (q @ k.transpose(-2, -1)) * self.temperature | |
attn = attn.softmax(dim=-1) | |
attn = self.attn_drop(attn) | |
# attention output | |
attened_x = (attn @ v).permute(0, 3, 1, 2).reshape(B, N, C) | |
# convolution output | |
conv_x = self.dwconv(v_) | |
# Adaptive Interaction Module (AIM) | |
# C-Map (before sigmoid) | |
attention_reshape = attened_x.transpose(-2,-1).contiguous().view(B, C, H, W) | |
channel_map = self.channel_interaction(attention_reshape) | |
# S-Map (before sigmoid) | |
spatial_map = self.spatial_interaction(conv_x).permute(0, 2, 3, 1).contiguous().view(B, N, 1) | |
# S-I | |
attened_x = attened_x * torch.sigmoid(spatial_map) | |
# C-I | |
conv_x = conv_x * torch.sigmoid(channel_map) | |
conv_x = conv_x.permute(0, 2, 3, 1).contiguous().view(B, N, C) | |
x = attened_x + conv_x | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
class DATB(nn.Module): | |
def __init__(self, dim, num_heads, reso=64, split_size=[2,4],shift_size=[1,2], expansion_factor=4., qkv_bias=False, qk_scale=None, drop=0., | |
attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, rg_idx=0, b_idx=0): | |
super().__init__() | |
self.norm1 = norm_layer(dim) | |
if b_idx % 2 == 0: | |
# DSTB | |
self.attn = Adaptive_Spatial_Attention( | |
dim, num_heads=num_heads, reso=reso, split_size=split_size, shift_size=shift_size, qkv_bias=qkv_bias, qk_scale=qk_scale, | |
drop=drop, attn_drop=attn_drop, rg_idx=rg_idx, b_idx=b_idx | |
) | |
else: | |
# DCTB | |
self.attn = Adaptive_Channel_Attention( | |
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, | |
proj_drop=drop | |
) | |
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
ffn_hidden_dim = int(dim * expansion_factor) | |
self.ffn = SGFN(in_features=dim, hidden_features=ffn_hidden_dim, out_features=dim, act_layer=act_layer) | |
self.norm2 = norm_layer(dim) | |
def forward(self, x, x_size): | |
""" | |
Input: x: (B, H*W, C), x_size: (H, W) | |
Output: x: (B, H*W, C) | |
""" | |
H , W = x_size | |
x = x + self.drop_path(self.attn(self.norm1(x), H, W)) | |
x = x + self.drop_path(self.ffn(self.norm2(x), H, W)) | |
return x | |
class ResidualGroup(nn.Module): | |
""" ResidualGroup | |
Args: | |
dim (int): Number of input channels. | |
reso (int): Input resolution. | |
num_heads (int): Number of attention heads. | |
split_size (tuple(int)): Height and Width of spatial window. | |
expansion_factor (float): Ratio of ffn hidden dim to embedding dim. | |
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True | |
qk_scale (float | None): Override default qk scale of head_dim ** -0.5 if set. Default: None | |
drop (float): Dropout rate. Default: 0 | |
attn_drop(float): Attention dropout rate. Default: 0 | |
drop_paths (float | None): Stochastic depth rate. | |
act_layer (nn.Module): Activation layer. Default: nn.GELU | |
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm | |
depth (int): Number of dual aggregation Transformer blocks in residual group. | |
use_chk (bool): Whether to use checkpointing to save memory. | |
resi_connection: The convolutional block before residual connection. '1conv'/'3conv' | |
""" | |
def __init__( self, | |
dim, | |
reso, | |
num_heads, | |
split_size=[2,4], | |
expansion_factor=4., | |
qkv_bias=False, | |
qk_scale=None, | |
drop=0., | |
attn_drop=0., | |
drop_paths=None, | |
act_layer=nn.GELU, | |
norm_layer=nn.LayerNorm, | |
depth=2, | |
use_chk=False, | |
resi_connection='1conv', | |
rg_idx=0): | |
super().__init__() | |
self.use_chk = use_chk | |
self.reso = reso | |
self.blocks = nn.ModuleList([ | |
DATB( | |
dim=dim, | |
num_heads=num_heads, | |
reso = reso, | |
split_size = split_size, | |
shift_size = [split_size[0]//2, split_size[1]//2], | |
expansion_factor=expansion_factor, | |
qkv_bias=qkv_bias, | |
qk_scale=qk_scale, | |
drop=drop, | |
attn_drop=attn_drop, | |
drop_path=drop_paths[i], | |
act_layer=act_layer, | |
norm_layer=norm_layer, | |
rg_idx = rg_idx, | |
b_idx = i, | |
)for i in range(depth)]) | |
if resi_connection == '1conv': | |
self.conv = nn.Conv2d(dim, dim, 3, 1, 1) | |
elif resi_connection == '3conv': | |
self.conv = nn.Sequential( | |
nn.Conv2d(dim, dim // 4, 3, 1, 1), nn.LeakyReLU(negative_slope=0.2, inplace=True), | |
nn.Conv2d(dim // 4, dim // 4, 1, 1, 0), nn.LeakyReLU(negative_slope=0.2, inplace=True), | |
nn.Conv2d(dim // 4, dim, 3, 1, 1)) | |
def forward(self, x, x_size): | |
""" | |
Input: x: (B, H*W, C), x_size: (H, W) | |
Output: x: (B, H*W, C) | |
""" | |
H, W = x_size | |
res = x | |
for blk in self.blocks: | |
if self.use_chk: | |
x = checkpoint.checkpoint(blk, x, x_size) | |
else: | |
x = blk(x, x_size) | |
x = rearrange(x, "b (h w) c -> b c h w", h=H, w=W) | |
x = self.conv(x) | |
x = rearrange(x, "b c h w -> b (h w) c") | |
x = res + x | |
return x | |
class Upsample(nn.Sequential): | |
"""Upsample module. | |
Args: | |
scale (int): Scale factor. Supported scales: 2^n and 3. | |
num_feat (int): Channel number of intermediate features. | |
""" | |
def __init__(self, scale, num_feat): | |
m = [] | |
if (scale & (scale - 1)) == 0: # scale = 2^n | |
for _ in range(int(math.log(scale, 2))): | |
m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1)) | |
m.append(nn.PixelShuffle(2)) | |
elif scale == 3: | |
m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1)) | |
m.append(nn.PixelShuffle(3)) | |
else: | |
raise ValueError(f'scale {scale} is not supported. ' 'Supported scales: 2^n and 3.') | |
super(Upsample, self).__init__(*m) | |
class UpsampleOneStep(nn.Sequential): | |
"""UpsampleOneStep module (the difference with Upsample is that it always only has 1conv + 1pixelshuffle) | |
Used in lightweight SR to save parameters. | |
Args: | |
scale (int): Scale factor. Supported scales: 2^n and 3. | |
num_feat (int): Channel number of intermediate features. | |
""" | |
def __init__(self, scale, num_feat, num_out_ch, input_resolution=None): | |
self.num_feat = num_feat | |
self.input_resolution = input_resolution | |
m = [] | |
m.append(nn.Conv2d(num_feat, (scale**2) * num_out_ch, 3, 1, 1)) | |
m.append(nn.PixelShuffle(scale)) | |
super(UpsampleOneStep, self).__init__(*m) | |
def flops(self): | |
h, w = self.input_resolution | |
flops = h * w * self.num_feat * 3 * 9 | |
return flops | |
class DAT(nn.Module): | |
""" Dual Aggregation Transformer | |
Args: | |
img_size (int): Input image size. Default: 64 | |
in_chans (int): Number of input image channels. Default: 3 | |
embed_dim (int): Patch embedding dimension. Default: 180 | |
depths (tuple(int)): Depth of each residual group (number of DATB in each RG). | |
split_size (tuple(int)): Height and Width of spatial window. | |
num_heads (tuple(int)): Number of attention heads in different residual groups. | |
expansion_factor (float): Ratio of ffn hidden dim to embedding dim. Default: 4 | |
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True | |
qk_scale (float | None): Override default qk scale of head_dim ** -0.5 if set. Default: None | |
drop_rate (float): Dropout rate. Default: 0 | |
attn_drop_rate (float): Attention dropout rate. Default: 0 | |
drop_path_rate (float): Stochastic depth rate. Default: 0.1 | |
act_layer (nn.Module): Activation layer. Default: nn.GELU | |
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm | |
use_chk (bool): Whether to use checkpointing to save memory. | |
upscale: Upscale factor. 2/3/4 for image SR | |
img_range: Image range. 1. or 255. | |
resi_connection: The convolutional block before residual connection. '1conv'/'3conv' | |
""" | |
def __init__(self, | |
img_size=64, | |
in_chans=3, | |
embed_dim=180, | |
split_size=[2,4], | |
depth=[2,2,2,2], | |
num_heads=[2,2,2,2], | |
expansion_factor=4., | |
qkv_bias=True, | |
qk_scale=None, | |
drop_rate=0., | |
attn_drop_rate=0., | |
drop_path_rate=0.1, | |
act_layer=nn.GELU, | |
norm_layer=nn.LayerNorm, | |
use_chk=False, | |
upscale=2, | |
img_range=1., | |
resi_connection='1conv', | |
upsampler='pixelshuffle', | |
**kwargs): | |
super().__init__() | |
num_in_ch = in_chans | |
num_out_ch = in_chans | |
num_feat = 64 | |
self.img_range = img_range | |
if in_chans == 3: | |
rgb_mean = (0.4488, 0.4371, 0.4040) | |
self.mean = torch.Tensor(rgb_mean).view(1, 3, 1, 1) | |
else: | |
self.mean = torch.zeros(1, 1, 1, 1) | |
self.upscale = upscale | |
self.upsampler = upsampler | |
# ------------------------- 1, Shallow Feature Extraction ------------------------- # | |
self.conv_first = nn.Conv2d(num_in_ch, embed_dim, 3, 1, 1) | |
# ------------------------- 2, Deep Feature Extraction ------------------------- # | |
self.num_layers = len(depth) | |
self.use_chk = use_chk | |
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models | |
heads=num_heads | |
self.before_RG = nn.Sequential( | |
Rearrange('b c h w -> b (h w) c'), | |
nn.LayerNorm(embed_dim) | |
) | |
curr_dim = embed_dim | |
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, np.sum(depth))] # stochastic depth decay rule | |
self.layers = nn.ModuleList() | |
for i in range(self.num_layers): | |
layer = ResidualGroup( | |
dim=embed_dim, | |
num_heads=heads[i], | |
reso=img_size, | |
split_size=split_size, | |
expansion_factor=expansion_factor, | |
qkv_bias=qkv_bias, | |
qk_scale=qk_scale, | |
drop=drop_rate, | |
attn_drop=attn_drop_rate, | |
drop_paths=dpr[sum(depth[:i]):sum(depth[:i + 1])], | |
act_layer=act_layer, | |
norm_layer=norm_layer, | |
depth=depth[i], | |
use_chk=use_chk, | |
resi_connection=resi_connection, | |
rg_idx=i) | |
self.layers.append(layer) | |
self.norm = norm_layer(curr_dim) | |
# build the last conv layer in deep feature extraction | |
if resi_connection == '1conv': | |
self.conv_after_body = nn.Conv2d(embed_dim, embed_dim, 3, 1, 1) | |
elif resi_connection == '3conv': | |
# to save parameters and memory | |
self.conv_after_body = nn.Sequential( | |
nn.Conv2d(embed_dim, embed_dim // 4, 3, 1, 1), nn.LeakyReLU(negative_slope=0.2, inplace=True), | |
nn.Conv2d(embed_dim // 4, embed_dim // 4, 1, 1, 0), nn.LeakyReLU(negative_slope=0.2, inplace=True), | |
nn.Conv2d(embed_dim // 4, embed_dim, 3, 1, 1)) | |
# ------------------------- 3, Reconstruction ------------------------- # | |
if self.upsampler == 'pixelshuffle': | |
# for classical SR | |
self.conv_before_upsample = nn.Sequential( | |
nn.Conv2d(embed_dim, num_feat, 3, 1, 1), nn.LeakyReLU(inplace=True)) | |
self.upsample = Upsample(upscale, num_feat) | |
self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1) | |
elif self.upsampler == 'pixelshuffledirect': | |
# for lightweight SR (to save parameters) | |
self.upsample = UpsampleOneStep(upscale, embed_dim, num_out_ch, | |
(img_size, img_size)) | |
self.apply(self._init_weights) | |
def _init_weights(self, m): | |
if isinstance(m, nn.Linear): | |
trunc_normal_(m.weight, std=.02) | |
if isinstance(m, nn.Linear) and m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, (nn.LayerNorm, nn.BatchNorm2d, nn.GroupNorm, nn.InstanceNorm2d)): | |
nn.init.constant_(m.bias, 0) | |
nn.init.constant_(m.weight, 1.0) | |
def forward_features(self, x): | |
_, _, H, W = x.shape | |
x_size = [H, W] | |
x = self.before_RG(x) | |
for layer in self.layers: | |
x = layer(x, x_size) | |
x = self.norm(x) | |
x = rearrange(x, "b (h w) c -> b c h w", h=H, w=W) | |
return x | |
def forward(self, x): | |
""" | |
Input: x: (B, C, H, W) | |
""" | |
self.mean = self.mean.type_as(x) | |
x = (x - self.mean) * self.img_range | |
if self.upsampler == 'pixelshuffle': | |
# for image SR | |
x = self.conv_first(x) | |
x = self.conv_after_body(self.forward_features(x)) + x | |
x = self.conv_before_upsample(x) | |
x = self.conv_last(self.upsample(x)) | |
elif self.upsampler == 'pixelshuffledirect': | |
# for lightweight SR | |
x = self.conv_first(x) | |
x = self.conv_after_body(self.forward_features(x)) + x | |
x = self.upsample(x) | |
x = x / self.img_range + self.mean | |
return x | |
if __name__ == '__main__': | |
upscale = 1 | |
height = 64 | |
width = 64 | |
model = DAT(upscale=4, | |
in_chans=3, | |
img_size=64, | |
img_range=1., | |
depth=[18], | |
embed_dim=60, | |
num_heads=[6], | |
expansion_factor=2, | |
resi_connection='3conv', | |
split_size=[8,32], | |
upsampler='pixelshuffledirect', | |
).cuda().eval() | |
print(height, width) | |
x = torch.randn((1, 3, height, width)).cuda() | |
x = model(x) | |
print(x.shape) |