APISR / train_code /train_esrnet.py
HikariDawn's picture
feat: initial push
561c629
# -*- coding: utf-8 -*-
import sys
import os
import torch
# Import important files
root_path = os.path.abspath('.')
sys.path.append(root_path)
from architecture.rrdb import RRDBNet
from train_code.train_master import train_master
# Mixed precision training
scaler = torch.cuda.amp.GradScaler()
class train_esrnet(train_master):
def __init__(self, options, args) -> None:
super().__init__(options, args, "esrnet") # Pass a model name unique code
def loss_init(self):
# Prepare pixel loss
self.pixel_loss_load()
def call_model(self):
# Generator Prepare (Don't formet torch.compile if needed)
self.generator = RRDBNet(3, 3, scale=self.options['scale'], num_block=self.options['ESR_blocks_num']).cuda()
# self.generator = torch.compile(self.generator).cuda()
self.generator.train()
def run(self):
self.master_run()
def calculate_loss(self, gen_hr, imgs_hr):
# Generator pixel loss (l1 loss): generated vs. GT
l_g_pix = self.cri_pix(gen_hr, imgs_hr, self.batch_idx)
self.weight_store["pixel_loss"] = l_g_pix
self.generator_loss += l_g_pix
def tensorboard_report(self, iteration):
# self.writer.add_scalar('Loss/train-Generator_Loss-Iteration', self.generator_loss, iteration)
self.writer.add_scalar('Loss/train-Pixel_Loss-Iteration', self.weight_store["pixel_loss"], iteration)