File size: 10,014 Bytes
38ae436
 
 
 
 
 
e5563d8
38ae436
 
 
 
b57d37a
 
f1b7b77
b57d37a
779412e
 
 
 
 
38ae436
 
 
 
 
 
 
 
 
 
 
 
 
b57d37a
38ae436
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3327c84
38ae436
 
 
 
 
 
 
 
 
 
 
b57d37a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb2c3bb
1f69552
 
 
 
 
 
c120050
 
3327c84
c120050
 
 
 
1f69552
e9dec03
c120050
332c793
c120050
 
 
 
 
 
 
 
 
 
 
3cf00a5
 
 
1f69552
 
 
 
c120050
3327c84
b57d37a
 
38ae436
779412e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4511161
779412e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38ae436
779412e
38ae436
779412e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb2c3bb
779412e
 
 
 
 
 
 
 
eb2c3bb
779412e
38ae436
 
779412e
ab45b4c
38ae436
779412e
 
c6ad5e3
779412e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38ae436
779412e
 
38ae436
779412e
 
 
 
 
 
 
38ae436
779412e
 
 
38ae436
779412e
 
 
 
 
 
 
869769a
ab45b4c
 
779412e
38ae436
ab45b4c
38ae436
 
 
 
 
 
 
e5563d8
 
38ae436
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import spaces
import os
import random
import argparse

import torch
import gradio as gr
import numpy as np

import ChatTTS

import se_extractor
from api import BaseSpeakerTTS, ToneColorConverter
import soundfile

from tts_voice import tts_order_voice
import edge_tts
import tempfile
import anyio

print("loading ChatTTS model...")
chat = ChatTTS.Chat()
chat.load_models()


def generate_seed():
    new_seed = random.randint(1, 100000000)
    return {
        "__type__": "update",
        "value": new_seed
        }

@spaces.GPU
def chat_tts(text, temperature, top_P, top_K, audio_seed_input, text_seed_input, refine_text_flag, refine_text_input, output_path=None):

    torch.manual_seed(audio_seed_input)
    rand_spk = torch.randn(768)
    params_infer_code = {
        'spk_emb': rand_spk, 
        'temperature': temperature,
        'top_P': top_P,
        'top_K': top_K,
        }
    params_refine_text = {'prompt': '[oral_2][laugh_0][break_6]'}
    
    torch.manual_seed(text_seed_input)

    if refine_text_flag:
        if refine_text_input:
           params_refine_text['prompt'] = refine_text_input
        text = chat.infer(text, 
                          skip_refine_text=False,
                          refine_text_only=True,
                          params_refine_text=params_refine_text,
                          params_infer_code=params_infer_code
                          )
        print("Text has been refined!")
    
    wav = chat.infer(text, 
                     skip_refine_text=True, 
                     params_refine_text=params_refine_text, 
                     params_infer_code=params_infer_code
                     )
    
    audio_data = np.array(wav[0]).flatten()
    sample_rate = 24000
    text_data = text[0] if isinstance(text, list) else text

    if output_path is None:
        return [(sample_rate, audio_data), text_data]
    else:
        soundfile.write(output_path, audio_data, sample_rate)

# OpenVoice

ckpt_base_en = 'checkpoints/base_speakers/EN'
ckpt_converter_en = 'checkpoints/converter'
device = 'cuda:0'

#device = "cpu"

base_speaker_tts = BaseSpeakerTTS(f'{ckpt_base_en}/config.json', device=device)
base_speaker_tts.load_ckpt(f'{ckpt_base_en}/checkpoint.pth')

tone_color_converter = ToneColorConverter(f'{ckpt_converter_en}/config.json', device=device)
tone_color_converter.load_ckpt(f'{ckpt_converter_en}/checkpoint.pth')


def generate_audio(text, audio_ref, temperature, top_P, top_K, audio_seed_input, text_seed_input, refine_text_flag, refine_text_input):
    source_se = torch.load(f'{ckpt_base_en}/en_default_se.pth').to(device)
    reference_speaker = audio_ref
    target_se, audio_name = se_extractor.get_se(reference_speaker, tone_color_converter, target_dir='processed', vad=True)
    save_path = "output.wav"

    # Run the base speaker tts
    src_path = "tmp.wav"
    chat_tts(text, temperature, top_P, top_K, audio_seed_input, text_seed_input, refine_text_flag, refine_text_input, src_path)
    print("Ready for voice cloning!")
    
    source_se, audio_name = se_extractor.get_se(src_path, tone_color_converter, target_dir='processed', vad=True)
    print("Get source segment!")
    
    # Run the tone color converter
    encode_message = "@Hilley"
    # convert from file
    tone_color_converter.convert(
        audio_src_path=src_path,
        src_se=source_se,
        tgt_se=target_se,
        output_path=save_path,
        message=encode_message)

    ''' 
    # convert from data
    src_path = None
    sample_rate, audio = chat_tts(text, temperature, top_P, top_K, audio_seed_input, text_seed_input, refine_text_flag, refine_text_input, src_path)[0]
    print("Ready for voice cloning!")
    tone_color_converter.convert_data(
        audio=audio,
        sample_rate=sample_rate,
        src_se=source_se,
        tgt_se=target_se,
        output_path=save_path,
        message=encode_message)
    '''
    print("Finished!")

    return "output.wav"

def vc_en(text, audio_ref, style_mode):
    if style_mode=="default":
        source_se = torch.load(f'{ckpt_base_en}/en_default_se.pth').to(device)
        reference_speaker = audio_ref
        target_se, audio_name = se_extractor.get_se(reference_speaker, tone_color_converter, target_dir='processed', vad=True)
        save_path = "output.wav"

        # Run the base speaker tts
        src_path = "tmp.wav"
        base_speaker_tts.tts(text, src_path, speaker='default', language='English', speed=1.0)

        # Run the tone color converter
        encode_message = "@MyShell"
        tone_color_converter.convert(
            audio_src_path=src_path,
            src_se=source_se,
            tgt_se=target_se,
            output_path=save_path,
            message=encode_message)

    else:
        source_se = torch.load(f'{ckpt_base_en}/en_style_se.pth').to(device)
        reference_speaker = audio_ref
        target_se, audio_name = se_extractor.get_se(reference_speaker, tone_color_converter, target_dir='processed', vad=True)

        save_path = "output.wav"

        # Run the base speaker tts
        src_path = "tmp.wav"
        base_speaker_tts.tts(text, src_path, speaker=style_mode, language='English', speed=0.9)

        # Run the tone color converter
        encode_message = "@MyShell"
        tone_color_converter.convert(
            audio_src_path=src_path,
            src_se=source_se,
            tgt_se=target_se,
            output_path=save_path,
            message=encode_message)

    return "output.wav"

language_dict = tts_order_voice

base_speaker = "base_audio.mp3"
source_se, audio_name = se_extractor.get_se(base_speaker, tone_color_converter, vad=True)

async def text_to_speech_edge(text, audio_ref, language_code):
    voice = language_dict[language_code]
    communicate = edge_tts.Communicate(text, voice)
    with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
        tmp_path = tmp_file.name

    await communicate.save(tmp_path)

    reference_speaker = audio_ref
    target_se, audio_name = se_extractor.get_se(reference_speaker, tone_color_converter, target_dir='processed', vad=True)
    save_path = "output.wav"

    # Run the tone color converter
    encode_message = "@MyShell"
    tone_color_converter.convert(
        audio_src_path=tmp_path,
        src_se=source_se,
        tgt_se=target_se,
        output_path=save_path,
        message=encode_message)

    return "output.wav"


with gr.Blocks() as demo:
    # gr.Markdown("# ❣️❣️")

    default_text = "Today a man knocked on my door and asked for a small donation toward the local swimming pool. I gave him a glass of water."        
    text_input = gr.Textbox(label="Input Text", lines=4, placeholder="Please Input Text...", value=default_text)
    voice_ref = gr.Audio(label="Reference Audio", type="filepath", value="base_audio.mp3")
    
    with gr.Tab("💕Super Natural"):
        default_refine_text = "[oral_2][laugh_0][break_6]"    
        refine_text_checkbox = gr.Checkbox(label="Refine text", info="'oral' means add filler words, 'laugh' means add laughter, and 'break' means add a pause. (0-10) ", value=True)
        refine_text_input = gr.Textbox(label="Refine Prompt", lines=1, placeholder="Please Refine Prompt...", value=default_refine_text)

        with gr.Row():
            temperature_slider = gr.Slider(minimum=0.00001, maximum=1.0, step=0.00001, value=0.3, label="Audio temperature")
            top_p_slider = gr.Slider(minimum=0.1, maximum=0.9, step=0.05, value=0.7, label="top_P")
            top_k_slider = gr.Slider(minimum=1, maximum=20, step=1, value=20, label="top_K")

        with gr.Row():
            audio_seed_input = gr.Number(value=42, label="Speaker Seed")
            generate_audio_seed = gr.Button("\U0001F3B2")
            text_seed_input = gr.Number(value=42, label="Text Seed")
            generate_text_seed = gr.Button("\U0001F3B2")

        generate_button = gr.Button("Generate!")
        
        #text_output = gr.Textbox(label="Refined Text", interactive=False)
        audio_output = gr.Audio(label="Output Audio")

        generate_audio_seed.click(generate_seed, 
                                  inputs=[], 
                                  outputs=audio_seed_input)
        
        generate_text_seed.click(generate_seed, 
                                 inputs=[], 
                                 outputs=text_seed_input)
        
        generate_button.click(generate_audio, 
                              inputs=[text_input, voice_ref, temperature_slider, top_p_slider, top_k_slider, audio_seed_input, text_seed_input, refine_text_checkbox, refine_text_input], 
                              outputs=audio_output)
        
    with gr.Tab("💕Emotion Control"):
        emo_pick = gr.Dropdown(label="Emotion", info="🙂default😊friendly🤫whispering😄cheerful😱terrified😡angry😢sad", choices=["default", "friendly", "whispering", "cheerful", "terrified", "angry", "sad"], value="default")
        generate_button_emo = gr.Button("Generate!", variant="primary")
        audio_emo = gr.Audio(label="Output Audio", type="filepath")
        generate_button_emo.click(vc_en, [text_input, voice_ref, emo_pick], audio_emo)

    with gr.Tab("💕multilingual"):
        language = gr.Dropdown(choices=list(language_dict.keys()), value=list(language_dict.keys())[15], label="Language")
        generate_button_ml = gr.Button("Generate!", variant="primary")
        audio_ml = gr.Audio(label="Output Audio", type="filepath")
        generate_button_ml.click(text_to_speech_edge, [text_input, voice_ref, language], audio_ml)

parser = argparse.ArgumentParser(description='ChatVC demo Launch')
parser.add_argument('--server_name', type=str, default='0.0.0.0', help='Server name')
parser.add_argument('--server_port', type=int, default=8080, help='Server port')
args = parser.parse_args()

    # demo.launch(server_name=args.server_name, server_port=args.server_port, inbrowser=True)




if __name__ == '__main__':
    demo.launch()