File size: 6,593 Bytes
38ae436
 
 
 
 
 
e5563d8
38ae436
 
 
 
b57d37a
 
 
38ae436
 
 
 
 
 
 
 
 
 
 
 
 
b57d37a
38ae436
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b57d37a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb2c3bb
b57d37a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38ae436
 
 
 
 
 
 
eb2c3bb
 
38ae436
 
 
eb2c3bb
 
38ae436
 
 
 
 
 
 
 
 
 
 
 
 
 
b57d37a
38ae436
 
 
 
 
 
 
 
 
 
 
eb2c3bb
b57d37a
38ae436
 
 
 
 
 
 
 
 
e5563d8
 
38ae436
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import spaces
import os
import random
import argparse

import torch
import gradio as gr
import numpy as np

import ChatTTS

import se_extractor
from api import BaseSpeakerTTS, ToneColorConverter

print("loading ChatTTS model...")
chat = ChatTTS.Chat()
chat.load_models()


def generate_seed():
    new_seed = random.randint(1, 100000000)
    return {
        "__type__": "update",
        "value": new_seed
        }

@spaces.GPU
def chat_tts(text, temperature, top_P, top_K, audio_seed_input, text_seed_input, refine_text_flag, refine_text_input, output_path=None):

    torch.manual_seed(audio_seed_input)
    rand_spk = torch.randn(768)
    params_infer_code = {
        'spk_emb': rand_spk, 
        'temperature': temperature,
        'top_P': top_P,
        'top_K': top_K,
        }
    params_refine_text = {'prompt': '[oral_2][laugh_0][break_6]'}
    
    torch.manual_seed(text_seed_input)

    if refine_text_flag:
        if refine_text_input:
           params_refine_text['prompt'] = refine_text_input
        text = chat.infer(text, 
                          skip_refine_text=False,
                          refine_text_only=True,
                          params_refine_text=params_refine_text,
                          params_infer_code=params_infer_code
                          )
    
    wav = chat.infer(text, 
                     skip_refine_text=True, 
                     params_refine_text=params_refine_text, 
                     params_infer_code=params_infer_code
                     )
    
    audio_data = np.array(wav[0]).flatten()
    sample_rate = 24000
    text_data = text[0] if isinstance(text, list) else text

    if output_path is None:
        return [(sample_rate, audio_data), text_data]
    else:
        soundfile.write(output_path, audio_data, sample_rate)

# OpenVoice

ckpt_base_en = 'checkpoints/base_speakers/EN'
ckpt_converter_en = 'checkpoints/converter'
device = 'cuda:0'

#device = "cpu"

base_speaker_tts = BaseSpeakerTTS(f'{ckpt_base_en}/config.json', device=device)
base_speaker_tts.load_ckpt(f'{ckpt_base_en}/checkpoint.pth')

tone_color_converter = ToneColorConverter(f'{ckpt_converter_en}/config.json', device=device)
tone_color_converter.load_ckpt(f'{ckpt_converter_en}/checkpoint.pth')


def generate_audio(text, audio_ref, temperature, top_P, top_K, audio_seed_input, text_seed_input, refine_text_flag, refine_text_input):
    if style_mode=="default":
        source_se = torch.load(f'{ckpt_base_en}/en_default_se.pth').to(device)
        reference_speaker = audio_ref
        target_se, audio_name = se_extractor.get_se(reference_speaker, tone_color_converter, target_dir='processed', vad=True)
        save_path = "output.wav"

        # Run the base speaker tts
        src_path = "tmp.wav"
        chat_tts(text, text, temperature, top_P, top_K, audio_seed_input, text_seed_input, refine_text_flag, refine_text_input, output_path=None, src_path)

        # Run the tone color converter
        encode_message = "@MyShell"
        tone_color_converter.convert(
            audio_src_path=src_path,
            src_se=source_se,
            tgt_se=target_se,
            output_path=save_path,
            message=encode_message)

    else:
        source_se = torch.load(f'{ckpt_base_en}/en_style_se.pth').to(device)
        reference_speaker = audio_ref
        target_se, audio_name = se_extractor.get_se(reference_speaker, tone_color_converter, target_dir='processed', vad=True)

        save_path = "output.wav"

        # Run the base speaker tts
        src_path = "tmp.wav"
        base_speaker_tts.tts(text, src_path, speaker=style_mode, language='English', speed=0.9)

        # Run the tone color converter
        encode_message = "@MyShell"
        tone_color_converter.convert(
            audio_src_path=src_path,
            src_se=source_se,
            tgt_se=target_se,
            output_path=save_path,
            message=encode_message)

    return "output.wav"


with gr.Blocks() as demo:
    gr.Markdown("# Enjoy chatting with your ai friends on website, telegram and so on! (https://linkin.love)")

    default_text = "Today a man knocked on my door and asked for a small donation toward the local swimming pool. I gave him a glass of water."        
    text_input = gr.Textbox(label="Input Text", lines=4, placeholder="Please Input Text...", value=default_text)


    default_refine_text = "[oral_2][laugh_0][break_6]"    
    refine_text_checkbox = gr.Checkbox(label="Refine text:'oral' means add filler words, 'laugh' means add laughter, and 'break' means add a pause. (0-10) ", value=True)
    refine_text_input = gr.Textbox(label="Refine Prompt", lines=1, placeholder="Please Refine Prompt...", value=default_refine_text)
    with gr.Column():    
        clone_voice = gr.Audio(label="请上传您喜欢的语音文件", type="filepath")

    with gr.Row():
        temperature_slider = gr.Slider(minimum=0.00001, maximum=1.0, step=0.00001, value=0.3, label="Audio temperature")
        top_p_slider = gr.Slider(minimum=0.1, maximum=0.9, step=0.05, value=0.7, label="top_P")
        top_k_slider = gr.Slider(minimum=1, maximum=20, step=1, value=20, label="top_K")

    with gr.Row():
        audio_seed_input = gr.Number(value=42, label="Speaker Seed")
        generate_audio_seed = gr.Button("\U0001F3B2")
        text_seed_input = gr.Number(value=42, label="Text Seed")
        generate_text_seed = gr.Button("\U0001F3B2")

    generate_button = gr.Button("Generate")
        
    #text_output = gr.Textbox(label="Refined Text", interactive=False)
    audio_output = gr.Audio(label="Output Audio")

    generate_audio_seed.click(generate_seed, 
                              inputs=[], 
                              outputs=audio_seed_input)
        
    generate_text_seed.click(generate_seed, 
                             inputs=[], 
                             outputs=text_seed_input)
        
    generate_button.click(generate_audio, 
                          inputs=[text_input, clone_voice, temperature_slider, top_p_slider, top_k_slider, audio_seed_input, text_seed_input, refine_text_checkbox, refine_text_input], 
                          outputs=audio_output)

parser = argparse.ArgumentParser(description='ChatTTS demo Launch')
parser.add_argument('--server_name', type=str, default='0.0.0.0', help='Server name')
parser.add_argument('--server_port', type=int, default=8080, help='Server port')
args = parser.parse_args()

    # demo.launch(server_name=args.server_name, server_port=args.server_port, inbrowser=True)




if __name__ == '__main__':
    demo.launch()