File size: 4,958 Bytes
38ae436
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import math
from einops import rearrange
from vector_quantize_pytorch import GroupedResidualFSQ

import torch
import torch.nn as nn
import torch.nn.functional as F

class ConvNeXtBlock(nn.Module):
    def __init__(
        self,
        dim: int,
        intermediate_dim: int,
        kernel, dilation,
        layer_scale_init_value: float = 1e-6,
    ):
        # ConvNeXt Block copied from Vocos.
        super().__init__()
        self.dwconv = nn.Conv1d(dim, dim, 
                                kernel_size=kernel, padding=dilation*(kernel//2), 
                                dilation=dilation, groups=dim
                            )  # depthwise conv
        
        self.norm = nn.LayerNorm(dim, eps=1e-6)
        self.pwconv1 = nn.Linear(dim, intermediate_dim)  # pointwise/1x1 convs, implemented with linear layers
        self.act = nn.GELU()
        self.pwconv2 = nn.Linear(intermediate_dim, dim)
        self.gamma = (
            nn.Parameter(layer_scale_init_value * torch.ones(dim), requires_grad=True)
            if layer_scale_init_value > 0
            else None
        )

    def forward(self, x: torch.Tensor, cond = None) -> torch.Tensor:
        residual = x
        x = self.dwconv(x)
        x = x.transpose(1, 2)  # (B, C, T) -> (B, T, C)
        x = self.norm(x)
        x = self.pwconv1(x)
        x = self.act(x)
        x = self.pwconv2(x)
        if self.gamma is not None:
            x = self.gamma * x
        x = x.transpose(1, 2)  # (B, T, C) -> (B, C, T)

        x = residual + x
        return x
    


class GFSQ(nn.Module):

    def __init__(self, 
            dim, levels, G, R, eps=1e-5, transpose = True
        ):
        super(GFSQ, self).__init__()
        self.quantizer = GroupedResidualFSQ(
            dim=dim,
            levels=levels,
            num_quantizers=R,
            groups=G,
        )
        self.n_ind = math.prod(levels)
        self.eps = eps
        self.transpose = transpose
        self.G = G
        self.R = R
        
    def _embed(self, x):
        if self.transpose:
            x = x.transpose(1,2)
        x = rearrange(
            x, "b t (g r) -> g b t r", g = self.G, r = self.R,
        )  
        feat = self.quantizer.get_output_from_indices(x)
        return feat.transpose(1,2) if self.transpose else feat
        
    def forward(self, x,):
        if self.transpose:
            x = x.transpose(1,2)
        feat, ind = self.quantizer(x)
        ind = rearrange(
            ind, "g b t r ->b t (g r)",
        )  
        embed_onehot = F.one_hot(ind.long(), self.n_ind).to(x.dtype)
        e_mean = torch.mean(embed_onehot, dim=[0,1])
        e_mean = e_mean / (e_mean.sum(dim=1) + self.eps).unsqueeze(1)
        perplexity = torch.exp(-torch.sum(e_mean * torch.log(e_mean + self.eps), dim=1))
        
        return (
            torch.zeros(perplexity.shape, dtype=x.dtype, device=x.device),
            feat.transpose(1,2) if self.transpose else feat,
            perplexity,
            None,
            ind.transpose(1,2) if self.transpose else ind,
        )
        
class DVAEDecoder(nn.Module):
    def __init__(self, idim, odim,
                 n_layer = 12, bn_dim = 64, hidden = 256, 
                 kernel = 7, dilation = 2, up = False
                ):
        super().__init__()
        self.up = up
        self.conv_in = nn.Sequential(
            nn.Conv1d(idim, bn_dim, 3, 1, 1), nn.GELU(),
            nn.Conv1d(bn_dim, hidden, 3, 1, 1)
        )
        self.decoder_block = nn.ModuleList([
            ConvNeXtBlock(hidden, hidden* 4, kernel, dilation,)
            for _ in range(n_layer)])
        self.conv_out = nn.Conv1d(hidden, odim, kernel_size=1, bias=False)

    def forward(self, input, conditioning=None):
        # B, T, C
        x = input.transpose(1, 2)
        x = self.conv_in(x)
        for f in self.decoder_block:
            x = f(x, conditioning)
        
        x = self.conv_out(x)
        return x.transpose(1, 2)
    

class DVAE(nn.Module):
    def __init__(
        self, decoder_config, vq_config, dim=512
    ):
        super().__init__()
        self.register_buffer('coef', torch.randn(1, 100, 1))

        self.decoder = DVAEDecoder(**decoder_config)
        self.out_conv = nn.Conv1d(dim, 100, 3, 1, 1, bias=False)
        if vq_config is not None:
            self.vq_layer = GFSQ(**vq_config)
        else:
            self.vq_layer = None

    def forward(self, inp):

        if self.vq_layer is not None:
            vq_feats = self.vq_layer._embed(inp)
        else:
            vq_feats = inp.detach().clone()
            
        temp = torch.chunk(vq_feats, 2, dim=1) # flatten trick :)
        temp = torch.stack(temp, -1)
        vq_feats = temp.reshape(*temp.shape[:2], -1)

        vq_feats = vq_feats.transpose(1, 2)
        dec_out = self.decoder(input=vq_feats)
        dec_out = self.out_conv(dec_out.transpose(1, 2))
        mel = dec_out * self.coef

        return mel