ChatVC / ChatTTS /core.py
Hilley's picture
Upload 13 files
38ae436 verified
raw
history blame
6.11 kB
import os
import logging
from omegaconf import OmegaConf
import torch
from vocos import Vocos
from .model.dvae import DVAE
from .model.gpt import GPT_warpper
from .utils.gpu_utils import select_device
from .utils.io_utils import get_latest_modified_file
from .infer.api import refine_text, infer_code
from huggingface_hub import snapshot_download
logging.basicConfig(level = logging.INFO)
class Chat:
def __init__(self, ):
self.pretrain_models = {}
self.logger = logging.getLogger(__name__)
def check_model(self, level = logging.INFO, use_decoder = False):
not_finish = False
check_list = ['vocos', 'gpt', 'tokenizer']
if use_decoder:
check_list.append('decoder')
else:
check_list.append('dvae')
for module in check_list:
if module not in self.pretrain_models:
self.logger.log(logging.WARNING, f'{module} not initialized.')
not_finish = True
if not not_finish:
self.logger.log(level, f'All initialized.')
return not not_finish
def load_models(self, source='huggingface', force_redownload=False, local_path='<LOCAL_PATH>'):
if source == 'huggingface':
hf_home = os.getenv('HF_HOME', os.path.expanduser("~/.cache/huggingface"))
try:
download_path = get_latest_modified_file(os.path.join(hf_home, 'hub/models--2Noise--ChatTTS/snapshots'))
except:
download_path = None
if download_path is None or force_redownload:
self.logger.log(logging.INFO, f'Download from HF: https://huggingface.co/2Noise/ChatTTS')
download_path = snapshot_download(repo_id="2Noise/ChatTTS", allow_patterns=["*.pt", "*.yaml"])
else:
self.logger.log(logging.INFO, f'Load from cache: {download_path}')
self._load(**{k: os.path.join(download_path, v) for k, v in OmegaConf.load(os.path.join(download_path, 'config', 'path.yaml')).items()})
elif source == 'local':
self.logger.log(logging.INFO, f'Load from local: {local_path}')
self._load(**{k: os.path.join(local_path, v) for k, v in OmegaConf.load(os.path.join(local_path, 'config', 'path.yaml')).items()})
def _load(
self,
vocos_config_path: str = None,
vocos_ckpt_path: str = None,
dvae_config_path: str = None,
dvae_ckpt_path: str = None,
gpt_config_path: str = None,
gpt_ckpt_path: str = None,
decoder_config_path: str = None,
decoder_ckpt_path: str = None,
tokenizer_path: str = None,
device: str = None
):
if not device:
device = select_device(4096)
self.logger.log(logging.INFO, f'use {device}')
if vocos_config_path:
vocos = Vocos.from_hparams(vocos_config_path).to(device).eval()
assert vocos_ckpt_path, 'vocos_ckpt_path should not be None'
vocos.load_state_dict(torch.load(vocos_ckpt_path))
self.pretrain_models['vocos'] = vocos
self.logger.log(logging.INFO, 'vocos loaded.')
if dvae_config_path:
cfg = OmegaConf.load(dvae_config_path)
dvae = DVAE(**cfg).to(device).eval()
assert dvae_ckpt_path, 'dvae_ckpt_path should not be None'
dvae.load_state_dict(torch.load(dvae_ckpt_path, map_location='cpu'))
self.pretrain_models['dvae'] = dvae
self.logger.log(logging.INFO, 'dvae loaded.')
if gpt_config_path:
cfg = OmegaConf.load(gpt_config_path)
gpt = GPT_warpper(**cfg).to(device).eval()
assert gpt_ckpt_path, 'gpt_ckpt_path should not be None'
gpt.load_state_dict(torch.load(gpt_ckpt_path, map_location='cpu'))
self.pretrain_models['gpt'] = gpt
self.logger.log(logging.INFO, 'gpt loaded.')
if decoder_config_path:
cfg = OmegaConf.load(decoder_config_path)
decoder = DVAE(**cfg).to(device).eval()
assert decoder_ckpt_path, 'decoder_ckpt_path should not be None'
decoder.load_state_dict(torch.load(decoder_ckpt_path, map_location='cpu'))
self.pretrain_models['decoder'] = decoder
self.logger.log(logging.INFO, 'decoder loaded.')
if tokenizer_path:
tokenizer = torch.load(tokenizer_path, map_location='cpu')
tokenizer.padding_side = 'left'
self.pretrain_models['tokenizer'] = tokenizer
self.logger.log(logging.INFO, 'tokenizer loaded.')
self.check_model()
def infer(
self,
text,
skip_refine_text=False,
refine_text_only=False,
params_refine_text={},
params_infer_code={},
use_decoder=False
):
assert self.check_model(use_decoder=use_decoder)
if not skip_refine_text:
text_tokens = refine_text(self.pretrain_models, text, **params_refine_text)['ids']
text_tokens = [i[i < self.pretrain_models['tokenizer'].convert_tokens_to_ids('[break_0]')] for i in text_tokens]
text = self.pretrain_models['tokenizer'].batch_decode(text_tokens)
if refine_text_only:
return text
text = [params_infer_code.get('prompt', '') + i for i in text]
params_infer_code.pop('prompt', '')
result = infer_code(self.pretrain_models, text, **params_infer_code, return_hidden=use_decoder)
if use_decoder:
mel_spec = [self.pretrain_models['decoder'](i[None].permute(0,2,1)) for i in result['hiddens']]
else:
mel_spec = [self.pretrain_models['dvae'](i[None].permute(0,2,1)) for i in result['ids']]
wav = [self.pretrain_models['vocos'].decode(i).cpu().numpy() for i in mel_spec]
return wav