Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,694 Bytes
b213d84 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 |
# Copyright (c) Facebook, Inc. and its affiliates.
import logging
import numpy as np
from typing import List, Optional, Tuple
import cv2
import torch
from densepose.structures import DensePoseDataRelative
from ..structures import DensePoseChartResult
from .base import Boxes, Image, MatrixVisualizer
class DensePoseResultsVisualizer:
def visualize(
self,
image_bgr: Image,
results_and_boxes_xywh: Tuple[Optional[List[DensePoseChartResult]], Optional[Boxes]],
) -> Image:
densepose_result, boxes_xywh = results_and_boxes_xywh
if densepose_result is None or boxes_xywh is None:
return image_bgr
boxes_xywh = boxes_xywh.cpu().numpy()
context = self.create_visualization_context(image_bgr)
for i, result in enumerate(densepose_result):
iuv_array = torch.cat(
(result.labels[None].type(torch.float32), result.uv * 255.0)
).type(torch.uint8)
self.visualize_iuv_arr(context, iuv_array.cpu().numpy(), boxes_xywh[i])
image_bgr = self.context_to_image_bgr(context)
return image_bgr
def create_visualization_context(self, image_bgr: Image):
return image_bgr
def visualize_iuv_arr(self, context, iuv_arr: np.ndarray, bbox_xywh) -> None:
pass
def context_to_image_bgr(self, context):
return context
def get_image_bgr_from_context(self, context):
return context
class DensePoseMaskedColormapResultsVisualizer(DensePoseResultsVisualizer):
def __init__(
self,
data_extractor,
segm_extractor,
inplace=True,
cmap=cv2.COLORMAP_PARULA,
alpha=0.7,
val_scale=1.0,
**kwargs,
):
self.mask_visualizer = MatrixVisualizer(
inplace=inplace, cmap=cmap, val_scale=val_scale, alpha=alpha
)
self.data_extractor = data_extractor
self.segm_extractor = segm_extractor
def context_to_image_bgr(self, context):
return context
def visualize_iuv_arr(self, context, iuv_arr: np.ndarray, bbox_xywh) -> None:
image_bgr = self.get_image_bgr_from_context(context)
matrix = self.data_extractor(iuv_arr)
segm = self.segm_extractor(iuv_arr)
mask = np.zeros(matrix.shape, dtype=np.uint8)
mask[segm > 0] = 1
image_bgr = self.mask_visualizer.visualize(image_bgr, mask, matrix, bbox_xywh)
def _extract_i_from_iuvarr(iuv_arr):
return iuv_arr[0, :, :]
def _extract_u_from_iuvarr(iuv_arr):
return iuv_arr[1, :, :]
def _extract_v_from_iuvarr(iuv_arr):
return iuv_arr[2, :, :]
class DensePoseResultsMplContourVisualizer(DensePoseResultsVisualizer):
def __init__(self, levels=10, **kwargs):
self.levels = levels
self.plot_args = kwargs
def create_visualization_context(self, image_bgr: Image):
import matplotlib.pyplot as plt
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
context = {}
context["image_bgr"] = image_bgr
dpi = 100
height_inches = float(image_bgr.shape[0]) / dpi
width_inches = float(image_bgr.shape[1]) / dpi
fig = plt.figure(figsize=(width_inches, height_inches), dpi=dpi)
plt.axes([0, 0, 1, 1])
plt.axis("off")
context["fig"] = fig
canvas = FigureCanvas(fig)
context["canvas"] = canvas
extent = (0, image_bgr.shape[1], image_bgr.shape[0], 0)
plt.imshow(image_bgr[:, :, ::-1], extent=extent)
return context
def context_to_image_bgr(self, context):
fig = context["fig"]
w, h = map(int, fig.get_size_inches() * fig.get_dpi())
canvas = context["canvas"]
canvas.draw()
image_1d = np.fromstring(canvas.tostring_rgb(), dtype="uint8")
image_rgb = image_1d.reshape(h, w, 3)
image_bgr = image_rgb[:, :, ::-1].copy()
return image_bgr
def visualize_iuv_arr(self, context, iuv_arr: np.ndarray, bbox_xywh: Boxes) -> None:
import matplotlib.pyplot as plt
u = _extract_u_from_iuvarr(iuv_arr).astype(float) / 255.0
v = _extract_v_from_iuvarr(iuv_arr).astype(float) / 255.0
extent = (
bbox_xywh[0],
bbox_xywh[0] + bbox_xywh[2],
bbox_xywh[1],
bbox_xywh[1] + bbox_xywh[3],
)
plt.contour(u, self.levels, extent=extent, **self.plot_args)
plt.contour(v, self.levels, extent=extent, **self.plot_args)
class DensePoseResultsCustomContourVisualizer(DensePoseResultsVisualizer):
"""
Contour visualization using marching squares
"""
def __init__(self, levels=10, **kwargs):
# TODO: colormap is hardcoded
cmap = cv2.COLORMAP_PARULA
if isinstance(levels, int):
self.levels = np.linspace(0, 1, levels)
else:
self.levels = levels
if "linewidths" in kwargs:
self.linewidths = kwargs["linewidths"]
else:
self.linewidths = [1] * len(self.levels)
self.plot_args = kwargs
img_colors_bgr = cv2.applyColorMap((self.levels * 255).astype(np.uint8), cmap)
self.level_colors_bgr = [
[int(v) for v in img_color_bgr.ravel()] for img_color_bgr in img_colors_bgr
]
def visualize_iuv_arr(self, context, iuv_arr: np.ndarray, bbox_xywh: Boxes) -> None:
image_bgr = self.get_image_bgr_from_context(context)
segm = _extract_i_from_iuvarr(iuv_arr)
u = _extract_u_from_iuvarr(iuv_arr).astype(float) / 255.0
v = _extract_v_from_iuvarr(iuv_arr).astype(float) / 255.0
self._contours(image_bgr, u, segm, bbox_xywh)
self._contours(image_bgr, v, segm, bbox_xywh)
def _contours(self, image_bgr, arr, segm, bbox_xywh):
for part_idx in range(1, DensePoseDataRelative.N_PART_LABELS + 1):
mask = segm == part_idx
if not np.any(mask):
continue
arr_min = np.amin(arr[mask])
arr_max = np.amax(arr[mask])
I, J = np.nonzero(mask)
i0 = np.amin(I)
i1 = np.amax(I) + 1
j0 = np.amin(J)
j1 = np.amax(J) + 1
if (j1 == j0 + 1) or (i1 == i0 + 1):
continue
Nw = arr.shape[1] - 1
Nh = arr.shape[0] - 1
for level_idx, level in enumerate(self.levels):
if (level < arr_min) or (level > arr_max):
continue
vp = arr[i0:i1, j0:j1] >= level
bin_codes = vp[:-1, :-1] + vp[1:, :-1] * 2 + vp[1:, 1:] * 4 + vp[:-1, 1:] * 8
mp = mask[i0:i1, j0:j1]
bin_mask_codes = mp[:-1, :-1] + mp[1:, :-1] * 2 + mp[1:, 1:] * 4 + mp[:-1, 1:] * 8
it = np.nditer(bin_codes, flags=["multi_index"])
color_bgr = self.level_colors_bgr[level_idx]
linewidth = self.linewidths[level_idx]
while not it.finished:
if (it[0] != 0) and (it[0] != 15):
i, j = it.multi_index
if bin_mask_codes[i, j] != 0:
self._draw_line(
image_bgr,
arr,
mask,
level,
color_bgr,
linewidth,
it[0],
it.multi_index,
bbox_xywh,
Nw,
Nh,
(i0, j0),
)
it.iternext()
def _draw_line(
self,
image_bgr,
arr,
mask,
v,
color_bgr,
linewidth,
bin_code,
multi_idx,
bbox_xywh,
Nw,
Nh,
offset,
):
lines = self._bin_code_2_lines(arr, v, bin_code, multi_idx, Nw, Nh, offset)
x0, y0, w, h = bbox_xywh
x1 = x0 + w
y1 = y0 + h
for line in lines:
x0r, y0r = line[0]
x1r, y1r = line[1]
pt0 = (int(x0 + x0r * (x1 - x0)), int(y0 + y0r * (y1 - y0)))
pt1 = (int(x0 + x1r * (x1 - x0)), int(y0 + y1r * (y1 - y0)))
cv2.line(image_bgr, pt0, pt1, color_bgr, linewidth)
def _bin_code_2_lines(self, arr, v, bin_code, multi_idx, Nw, Nh, offset):
i0, j0 = offset
i, j = multi_idx
i += i0
j += j0
v0, v1, v2, v3 = arr[i, j], arr[i + 1, j], arr[i + 1, j + 1], arr[i, j + 1]
x0i = float(j) / Nw
y0j = float(i) / Nh
He = 1.0 / Nh
We = 1.0 / Nw
if (bin_code == 1) or (bin_code == 14):
a = (v - v0) / (v1 - v0)
b = (v - v0) / (v3 - v0)
pt1 = (x0i, y0j + a * He)
pt2 = (x0i + b * We, y0j)
return [(pt1, pt2)]
elif (bin_code == 2) or (bin_code == 13):
a = (v - v0) / (v1 - v0)
b = (v - v1) / (v2 - v1)
pt1 = (x0i, y0j + a * He)
pt2 = (x0i + b * We, y0j + He)
return [(pt1, pt2)]
elif (bin_code == 3) or (bin_code == 12):
a = (v - v0) / (v3 - v0)
b = (v - v1) / (v2 - v1)
pt1 = (x0i + a * We, y0j)
pt2 = (x0i + b * We, y0j + He)
return [(pt1, pt2)]
elif (bin_code == 4) or (bin_code == 11):
a = (v - v1) / (v2 - v1)
b = (v - v3) / (v2 - v3)
pt1 = (x0i + a * We, y0j + He)
pt2 = (x0i + We, y0j + b * He)
return [(pt1, pt2)]
elif (bin_code == 6) or (bin_code == 9):
a = (v - v0) / (v1 - v0)
b = (v - v3) / (v2 - v3)
pt1 = (x0i, y0j + a * He)
pt2 = (x0i + We, y0j + b * He)
return [(pt1, pt2)]
elif (bin_code == 7) or (bin_code == 8):
a = (v - v0) / (v3 - v0)
b = (v - v3) / (v2 - v3)
pt1 = (x0i + a * We, y0j)
pt2 = (x0i + We, y0j + b * He)
return [(pt1, pt2)]
elif bin_code == 5:
a1 = (v - v0) / (v1 - v0)
b1 = (v - v1) / (v2 - v1)
pt11 = (x0i, y0j + a1 * He)
pt12 = (x0i + b1 * We, y0j + He)
a2 = (v - v0) / (v3 - v0)
b2 = (v - v3) / (v2 - v3)
pt21 = (x0i + a2 * We, y0j)
pt22 = (x0i + We, y0j + b2 * He)
return [(pt11, pt12), (pt21, pt22)]
elif bin_code == 10:
a1 = (v - v0) / (v3 - v0)
b1 = (v - v0) / (v1 - v0)
pt11 = (x0i + a1 * We, y0j)
pt12 = (x0i, y0j + b1 * He)
a2 = (v - v1) / (v2 - v1)
b2 = (v - v3) / (v2 - v3)
pt21 = (x0i + a2 * We, y0j + He)
pt22 = (x0i + We, y0j + b2 * He)
return [(pt11, pt12), (pt21, pt22)]
return []
try:
import matplotlib
matplotlib.use("Agg")
DensePoseResultsContourVisualizer = DensePoseResultsMplContourVisualizer
except ModuleNotFoundError:
logger = logging.getLogger(__name__)
logger.warning("Could not import matplotlib, using custom contour visualizer")
DensePoseResultsContourVisualizer = DensePoseResultsCustomContourVisualizer
class DensePoseResultsFineSegmentationVisualizer(DensePoseMaskedColormapResultsVisualizer):
def __init__(self, inplace=False, cmap=cv2.COLORMAP_PARULA, alpha=1, **kwargs):
super(DensePoseResultsFineSegmentationVisualizer, self).__init__(
_extract_i_from_iuvarr,
_extract_i_from_iuvarr,
inplace,
cmap,
alpha,
val_scale=255.0 / DensePoseDataRelative.N_PART_LABELS,
**kwargs,
)
class DensePoseResultsUVisualizer(DensePoseMaskedColormapResultsVisualizer):
def __init__(self, inplace=True, cmap=cv2.COLORMAP_PARULA, alpha=0.7, **kwargs):
super(DensePoseResultsUVisualizer, self).__init__(
_extract_u_from_iuvarr,
_extract_i_from_iuvarr,
inplace,
cmap,
alpha,
val_scale=1.0,
**kwargs,
)
class DensePoseResultsVVisualizer(DensePoseMaskedColormapResultsVisualizer):
def __init__(self, inplace=True, cmap=cv2.COLORMAP_PARULA, alpha=0.7, **kwargs):
super(DensePoseResultsVVisualizer, self).__init__(
_extract_v_from_iuvarr,
_extract_i_from_iuvarr,
inplace,
cmap,
alpha,
val_scale=1.0,
**kwargs,
)
|