Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,500 Bytes
b213d84 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
# Copyright (c) Facebook, Inc. and its affiliates.
import contextlib
import io
import itertools
import json
import logging
import numpy as np
import os
import tempfile
from collections import OrderedDict
from typing import Optional
from PIL import Image
from tabulate import tabulate
from detectron2.data import MetadataCatalog
from detectron2.utils import comm
from detectron2.utils.file_io import PathManager
from .evaluator import DatasetEvaluator
logger = logging.getLogger(__name__)
class COCOPanopticEvaluator(DatasetEvaluator):
"""
Evaluate Panoptic Quality metrics on COCO using PanopticAPI.
It saves panoptic segmentation prediction in `output_dir`
It contains a synchronize call and has to be called from all workers.
"""
def __init__(self, dataset_name: str, output_dir: Optional[str] = None):
"""
Args:
dataset_name: name of the dataset
output_dir: output directory to save results for evaluation.
"""
self._metadata = MetadataCatalog.get(dataset_name)
self._thing_contiguous_id_to_dataset_id = {
v: k for k, v in self._metadata.thing_dataset_id_to_contiguous_id.items()
}
self._stuff_contiguous_id_to_dataset_id = {
v: k for k, v in self._metadata.stuff_dataset_id_to_contiguous_id.items()
}
self._output_dir = output_dir
if self._output_dir is not None:
PathManager.mkdirs(self._output_dir)
def reset(self):
self._predictions = []
def _convert_category_id(self, segment_info):
isthing = segment_info.pop("isthing", None)
if isthing is None:
# the model produces panoptic category id directly. No more conversion needed
return segment_info
if isthing is True:
segment_info["category_id"] = self._thing_contiguous_id_to_dataset_id[
segment_info["category_id"]
]
else:
segment_info["category_id"] = self._stuff_contiguous_id_to_dataset_id[
segment_info["category_id"]
]
return segment_info
def process(self, inputs, outputs):
from panopticapi.utils import id2rgb
for input, output in zip(inputs, outputs):
panoptic_img, segments_info = output["panoptic_seg"]
panoptic_img = panoptic_img.cpu().numpy()
if segments_info is None:
# If "segments_info" is None, we assume "panoptic_img" is a
# H*W int32 image storing the panoptic_id in the format of
# category_id * label_divisor + instance_id. We reserve -1 for
# VOID label, and add 1 to panoptic_img since the official
# evaluation script uses 0 for VOID label.
label_divisor = self._metadata.label_divisor
segments_info = []
for panoptic_label in np.unique(panoptic_img):
if panoptic_label == -1:
# VOID region.
continue
pred_class = panoptic_label // label_divisor
isthing = (
pred_class in self._metadata.thing_dataset_id_to_contiguous_id.values()
)
segments_info.append(
{
"id": int(panoptic_label) + 1,
"category_id": int(pred_class),
"isthing": bool(isthing),
}
)
# Official evaluation script uses 0 for VOID label.
panoptic_img += 1
file_name = os.path.basename(input["file_name"])
file_name_png = os.path.splitext(file_name)[0] + ".png"
with io.BytesIO() as out:
Image.fromarray(id2rgb(panoptic_img)).save(out, format="PNG")
segments_info = [self._convert_category_id(x) for x in segments_info]
self._predictions.append(
{
"image_id": input["image_id"],
"file_name": file_name_png,
"png_string": out.getvalue(),
"segments_info": segments_info,
}
)
def evaluate(self):
comm.synchronize()
self._predictions = comm.gather(self._predictions)
self._predictions = list(itertools.chain(*self._predictions))
if not comm.is_main_process():
return
# PanopticApi requires local files
gt_json = PathManager.get_local_path(self._metadata.panoptic_json)
gt_folder = PathManager.get_local_path(self._metadata.panoptic_root)
with tempfile.TemporaryDirectory(prefix="panoptic_eval") as pred_dir:
logger.info("Writing all panoptic predictions to {} ...".format(pred_dir))
for p in self._predictions:
with open(os.path.join(pred_dir, p["file_name"]), "wb") as f:
f.write(p.pop("png_string"))
with open(gt_json, "r") as f:
json_data = json.load(f)
json_data["annotations"] = self._predictions
output_dir = self._output_dir or pred_dir
predictions_json = os.path.join(output_dir, "predictions.json")
with PathManager.open(predictions_json, "w") as f:
f.write(json.dumps(json_data))
from panopticapi.evaluation import pq_compute
with contextlib.redirect_stdout(io.StringIO()):
pq_res = pq_compute(
gt_json,
PathManager.get_local_path(predictions_json),
gt_folder=gt_folder,
pred_folder=pred_dir,
)
res = {}
res["PQ"] = 100 * pq_res["All"]["pq"]
res["SQ"] = 100 * pq_res["All"]["sq"]
res["RQ"] = 100 * pq_res["All"]["rq"]
res["PQ_th"] = 100 * pq_res["Things"]["pq"]
res["SQ_th"] = 100 * pq_res["Things"]["sq"]
res["RQ_th"] = 100 * pq_res["Things"]["rq"]
res["PQ_st"] = 100 * pq_res["Stuff"]["pq"]
res["SQ_st"] = 100 * pq_res["Stuff"]["sq"]
res["RQ_st"] = 100 * pq_res["Stuff"]["rq"]
results = OrderedDict({"panoptic_seg": res})
_print_panoptic_results(pq_res)
return results
def _print_panoptic_results(pq_res):
headers = ["", "PQ", "SQ", "RQ", "#categories"]
data = []
for name in ["All", "Things", "Stuff"]:
row = [name] + [pq_res[name][k] * 100 for k in ["pq", "sq", "rq"]] + [pq_res[name]["n"]]
data.append(row)
table = tabulate(
data, headers=headers, tablefmt="pipe", floatfmt=".3f", stralign="center", numalign="center"
)
logger.info("Panoptic Evaluation Results:\n" + table)
if __name__ == "__main__":
from detectron2.utils.logger import setup_logger
logger = setup_logger()
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--gt-json")
parser.add_argument("--gt-dir")
parser.add_argument("--pred-json")
parser.add_argument("--pred-dir")
args = parser.parse_args()
from panopticapi.evaluation import pq_compute
with contextlib.redirect_stdout(io.StringIO()):
pq_res = pq_compute(
args.gt_json, args.pred_json, gt_folder=args.gt_dir, pred_folder=args.pred_dir
)
_print_panoptic_results(pq_res)
|