File size: 13,213 Bytes
b213d84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
# Copyright (c) Facebook, Inc. and its affiliates.

import logging
from typing import List, Optional, Tuple
import torch
from fvcore.nn import sigmoid_focal_loss_jit
from torch import nn
from torch.nn import functional as F

from detectron2.layers import ShapeSpec, batched_nms
from detectron2.structures import Boxes, ImageList, Instances, pairwise_point_box_distance
from detectron2.utils.events import get_event_storage

from ..anchor_generator import DefaultAnchorGenerator
from ..backbone import Backbone
from ..box_regression import Box2BoxTransformLinear, _dense_box_regression_loss
from .dense_detector import DenseDetector
from .retinanet import RetinaNetHead

__all__ = ["FCOS"]

logger = logging.getLogger(__name__)


class FCOS(DenseDetector):
    """
    Implement FCOS in :paper:`fcos`.
    """

    def __init__(
        self,
        *,
        backbone: Backbone,
        head: nn.Module,
        head_in_features: Optional[List[str]] = None,
        box2box_transform=None,
        num_classes,
        center_sampling_radius: float = 1.5,
        focal_loss_alpha=0.25,
        focal_loss_gamma=2.0,
        test_score_thresh=0.2,
        test_topk_candidates=1000,
        test_nms_thresh=0.6,
        max_detections_per_image=100,
        pixel_mean,
        pixel_std,
    ):
        """
        Args:
            center_sampling_radius: radius of the "center" of a groundtruth box,
                within which all anchor points are labeled positive.
            Other arguments mean the same as in :class:`RetinaNet`.
        """
        super().__init__(
            backbone, head, head_in_features, pixel_mean=pixel_mean, pixel_std=pixel_std
        )

        self.num_classes = num_classes

        # FCOS uses one anchor point per location.
        # We represent the anchor point by a box whose size equals the anchor stride.
        feature_shapes = backbone.output_shape()
        fpn_strides = [feature_shapes[k].stride for k in self.head_in_features]
        self.anchor_generator = DefaultAnchorGenerator(
            sizes=[[k] for k in fpn_strides], aspect_ratios=[1.0], strides=fpn_strides
        )

        # FCOS parameterizes box regression by a linear transform,
        # where predictions are normalized by anchor stride (equal to anchor size).
        if box2box_transform is None:
            box2box_transform = Box2BoxTransformLinear(normalize_by_size=True)
        self.box2box_transform = box2box_transform

        self.center_sampling_radius = float(center_sampling_radius)

        # Loss parameters:
        self.focal_loss_alpha = focal_loss_alpha
        self.focal_loss_gamma = focal_loss_gamma

        # Inference parameters:
        self.test_score_thresh = test_score_thresh
        self.test_topk_candidates = test_topk_candidates
        self.test_nms_thresh = test_nms_thresh
        self.max_detections_per_image = max_detections_per_image

    def forward_training(self, images, features, predictions, gt_instances):
        # Transpose the Hi*Wi*A dimension to the middle:
        pred_logits, pred_anchor_deltas, pred_centerness = self._transpose_dense_predictions(
            predictions, [self.num_classes, 4, 1]
        )
        anchors = self.anchor_generator(features)
        gt_labels, gt_boxes = self.label_anchors(anchors, gt_instances)
        return self.losses(
            anchors, pred_logits, gt_labels, pred_anchor_deltas, gt_boxes, pred_centerness
        )

    @torch.no_grad()
    def _match_anchors(self, gt_boxes: Boxes, anchors: List[Boxes]):
        """
        Match ground-truth boxes to a set of multi-level anchors.

        Args:
            gt_boxes: Ground-truth boxes from instances of an image.
            anchors: List of anchors for each feature map (of different scales).

        Returns:
            torch.Tensor
                A tensor of shape `(M, R)`, given `M` ground-truth boxes and total
                `R` anchor points from all feature levels, indicating the quality
                of match between m-th box and r-th anchor. Higher value indicates
                better match.
        """
        # Naming convention: (M = ground-truth boxes, R = anchor points)
        # Anchor points are represented as square boxes of size = stride.
        num_anchors_per_level = [len(x) for x in anchors]
        anchors = Boxes.cat(anchors)  # (R, 4)
        anchor_centers = anchors.get_centers()  # (R, 2)
        anchor_sizes = anchors.tensor[:, 2] - anchors.tensor[:, 0]  # (R, )

        lower_bound = anchor_sizes * 4
        lower_bound[: num_anchors_per_level[0]] = 0
        upper_bound = anchor_sizes * 8
        upper_bound[-num_anchors_per_level[-1] :] = float("inf")

        gt_centers = gt_boxes.get_centers()

        # FCOS with center sampling: anchor point must be close enough to
        # ground-truth box center.
        center_dists = (anchor_centers[None, :, :] - gt_centers[:, None, :]).abs_()
        sampling_regions = self.center_sampling_radius * anchor_sizes[None, :]

        match_quality_matrix = center_dists.max(dim=2).values < sampling_regions

        pairwise_dist = pairwise_point_box_distance(anchor_centers, gt_boxes)
        pairwise_dist = pairwise_dist.permute(1, 0, 2)  # (M, R, 4)

        # The original FCOS anchor matching rule: anchor point must be inside GT.
        match_quality_matrix &= pairwise_dist.min(dim=2).values > 0

        # Multilevel anchor matching in FCOS: each anchor is only responsible
        # for certain scale range.
        pairwise_dist = pairwise_dist.max(dim=2).values
        match_quality_matrix &= (pairwise_dist > lower_bound[None, :]) & (
            pairwise_dist < upper_bound[None, :]
        )
        # Match the GT box with minimum area, if there are multiple GT matches.
        gt_areas = gt_boxes.area()  # (M, )

        match_quality_matrix = match_quality_matrix.to(torch.float32)
        match_quality_matrix *= 1e8 - gt_areas[:, None]
        return match_quality_matrix  # (M, R)

    @torch.no_grad()
    def label_anchors(self, anchors: List[Boxes], gt_instances: List[Instances]):
        """
        Same interface as :meth:`RetinaNet.label_anchors`, but implemented with FCOS
        anchor matching rule.

        Unlike RetinaNet, there are no ignored anchors.
        """

        gt_labels, matched_gt_boxes = [], []

        for inst in gt_instances:
            if len(inst) > 0:
                match_quality_matrix = self._match_anchors(inst.gt_boxes, anchors)

                # Find matched ground-truth box per anchor. Un-matched anchors are
                # assigned -1. This is equivalent to using an anchor matcher as used
                # in R-CNN/RetinaNet: `Matcher(thresholds=[1e-5], labels=[0, 1])`
                match_quality, matched_idxs = match_quality_matrix.max(dim=0)
                matched_idxs[match_quality < 1e-5] = -1

                matched_gt_boxes_i = inst.gt_boxes.tensor[matched_idxs.clip(min=0)]
                gt_labels_i = inst.gt_classes[matched_idxs.clip(min=0)]

                # Anchors with matched_idxs = -1 are labeled background.
                gt_labels_i[matched_idxs < 0] = self.num_classes
            else:
                matched_gt_boxes_i = torch.zeros_like(Boxes.cat(anchors).tensor)
                gt_labels_i = torch.full(
                    (len(matched_gt_boxes_i),),
                    fill_value=self.num_classes,
                    dtype=torch.long,
                    device=matched_gt_boxes_i.device,
                )

            gt_labels.append(gt_labels_i)
            matched_gt_boxes.append(matched_gt_boxes_i)

        return gt_labels, matched_gt_boxes

    def losses(
        self, anchors, pred_logits, gt_labels, pred_anchor_deltas, gt_boxes, pred_centerness
    ):
        """
        This method is almost identical to :meth:`RetinaNet.losses`, with an extra
        "loss_centerness" in the returned dict.
        """
        num_images = len(gt_labels)
        gt_labels = torch.stack(gt_labels)  # (M, R)

        pos_mask = (gt_labels >= 0) & (gt_labels != self.num_classes)
        num_pos_anchors = pos_mask.sum().item()
        get_event_storage().put_scalar("num_pos_anchors", num_pos_anchors / num_images)
        normalizer = self._ema_update("loss_normalizer", max(num_pos_anchors, 1), 300)

        # classification and regression loss
        gt_labels_target = F.one_hot(gt_labels, num_classes=self.num_classes + 1)[
            :, :, :-1
        ]  # no loss for the last (background) class
        loss_cls = sigmoid_focal_loss_jit(
            torch.cat(pred_logits, dim=1),
            gt_labels_target.to(pred_logits[0].dtype),
            alpha=self.focal_loss_alpha,
            gamma=self.focal_loss_gamma,
            reduction="sum",
        )

        loss_box_reg = _dense_box_regression_loss(
            anchors,
            self.box2box_transform,
            pred_anchor_deltas,
            gt_boxes,
            pos_mask,
            box_reg_loss_type="giou",
        )

        ctrness_targets = self.compute_ctrness_targets(anchors, gt_boxes)  # (M, R)
        pred_centerness = torch.cat(pred_centerness, dim=1).squeeze(dim=2)  # (M, R)
        ctrness_loss = F.binary_cross_entropy_with_logits(
            pred_centerness[pos_mask], ctrness_targets[pos_mask], reduction="sum"
        )
        return {
            "loss_fcos_cls": loss_cls / normalizer,
            "loss_fcos_loc": loss_box_reg / normalizer,
            "loss_fcos_ctr": ctrness_loss / normalizer,
        }

    def compute_ctrness_targets(self, anchors: List[Boxes], gt_boxes: List[torch.Tensor]):
        anchors = Boxes.cat(anchors).tensor  # Rx4
        reg_targets = [self.box2box_transform.get_deltas(anchors, m) for m in gt_boxes]
        reg_targets = torch.stack(reg_targets, dim=0)  # NxRx4
        if len(reg_targets) == 0:
            return reg_targets.new_zeros(len(reg_targets))
        left_right = reg_targets[:, :, [0, 2]]
        top_bottom = reg_targets[:, :, [1, 3]]
        ctrness = (left_right.min(dim=-1)[0] / left_right.max(dim=-1)[0]) * (
            top_bottom.min(dim=-1)[0] / top_bottom.max(dim=-1)[0]
        )
        return torch.sqrt(ctrness)

    def forward_inference(
        self,
        images: ImageList,
        features: List[torch.Tensor],
        predictions: List[List[torch.Tensor]],
    ):
        pred_logits, pred_anchor_deltas, pred_centerness = self._transpose_dense_predictions(
            predictions, [self.num_classes, 4, 1]
        )
        anchors = self.anchor_generator(features)

        results: List[Instances] = []
        for img_idx, image_size in enumerate(images.image_sizes):
            scores_per_image = [
                # Multiply and sqrt centerness & classification scores
                # (See eqn. 4 in https://arxiv.org/abs/2006.09214)
                torch.sqrt(x[img_idx].sigmoid_() * y[img_idx].sigmoid_())
                for x, y in zip(pred_logits, pred_centerness)
            ]
            deltas_per_image = [x[img_idx] for x in pred_anchor_deltas]
            results_per_image = self.inference_single_image(
                anchors, scores_per_image, deltas_per_image, image_size
            )
            results.append(results_per_image)
        return results

    def inference_single_image(
        self,
        anchors: List[Boxes],
        box_cls: List[torch.Tensor],
        box_delta: List[torch.Tensor],
        image_size: Tuple[int, int],
    ):
        """
        Identical to :meth:`RetinaNet.inference_single_image.
        """
        pred = self._decode_multi_level_predictions(
            anchors,
            box_cls,
            box_delta,
            self.test_score_thresh,
            self.test_topk_candidates,
            image_size,
        )
        keep = batched_nms(
            pred.pred_boxes.tensor, pred.scores, pred.pred_classes, self.test_nms_thresh
        )
        return pred[keep[: self.max_detections_per_image]]


class FCOSHead(RetinaNetHead):
    """
    The head used in :paper:`fcos`. It adds an additional centerness
    prediction branch on top of :class:`RetinaNetHead`.
    """

    def __init__(self, *, input_shape: List[ShapeSpec], conv_dims: List[int], **kwargs):
        super().__init__(input_shape=input_shape, conv_dims=conv_dims, num_anchors=1, **kwargs)
        # Unlike original FCOS, we do not add an additional learnable scale layer
        # because it's found to have no benefits after normalizing regression targets by stride.
        self._num_features = len(input_shape)
        self.ctrness = nn.Conv2d(conv_dims[-1], 1, kernel_size=3, stride=1, padding=1)
        torch.nn.init.normal_(self.ctrness.weight, std=0.01)
        torch.nn.init.constant_(self.ctrness.bias, 0)

    def forward(self, features):
        assert len(features) == self._num_features
        logits = []
        bbox_reg = []
        ctrness = []
        for feature in features:
            logits.append(self.cls_score(self.cls_subnet(feature)))
            bbox_feature = self.bbox_subnet(feature)
            bbox_reg.append(self.bbox_pred(bbox_feature))
            ctrness.append(self.ctrness(bbox_feature))
        return logits, bbox_reg, ctrness