File size: 56,789 Bytes
b213d84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# This is a modified version of cocoeval.py where we also have the densepose evaluation.

__author__ = "tsungyi"

import copy
import datetime
import logging
import numpy as np
import pickle
import time
from collections import defaultdict
from enum import Enum
from typing import Any, Dict, Tuple
import scipy.spatial.distance as ssd
import torch
import torch.nn.functional as F
from pycocotools import mask as maskUtils
from scipy.io import loadmat
from scipy.ndimage import zoom as spzoom

from detectron2.utils.file_io import PathManager

from densepose.converters.chart_output_to_chart_result import resample_uv_tensors_to_bbox
from densepose.converters.segm_to_mask import (
    resample_coarse_segm_tensor_to_bbox,
    resample_fine_and_coarse_segm_tensors_to_bbox,
)
from densepose.modeling.cse.utils import squared_euclidean_distance_matrix
from densepose.structures import DensePoseDataRelative
from densepose.structures.mesh import create_mesh

logger = logging.getLogger(__name__)


class DensePoseEvalMode(str, Enum):
    # use both masks and geodesic distances (GPS * IOU) to compute scores
    GPSM = "gpsm"
    # use only geodesic distances (GPS)  to compute scores
    GPS = "gps"
    # use only masks (IOU) to compute scores
    IOU = "iou"


class DensePoseDataMode(str, Enum):
    # use estimated IUV data (default mode)
    IUV_DT = "iuvdt"
    # use ground truth IUV data
    IUV_GT = "iuvgt"
    # use ground truth labels I and set UV to 0
    I_GT_UV_0 = "igtuv0"
    # use ground truth labels I and estimated UV coordinates
    I_GT_UV_DT = "igtuvdt"
    # use estimated labels I and set UV to 0
    I_DT_UV_0 = "idtuv0"


class DensePoseCocoEval:
    # Interface for evaluating detection on the Microsoft COCO dataset.
    #
    # The usage for CocoEval is as follows:
    #  cocoGt=..., cocoDt=...       # load dataset and results
    #  E = CocoEval(cocoGt,cocoDt); # initialize CocoEval object
    #  E.params.recThrs = ...;      # set parameters as desired
    #  E.evaluate();                # run per image evaluation
    #  E.accumulate();              # accumulate per image results
    #  E.summarize();               # display summary metrics of results
    # For example usage see evalDemo.m and http://mscoco.org/.
    #
    # The evaluation parameters are as follows (defaults in brackets):
    #  imgIds     - [all] N img ids to use for evaluation
    #  catIds     - [all] K cat ids to use for evaluation
    #  iouThrs    - [.5:.05:.95] T=10 IoU thresholds for evaluation
    #  recThrs    - [0:.01:1] R=101 recall thresholds for evaluation
    #  areaRng    - [...] A=4 object area ranges for evaluation
    #  maxDets    - [1 10 100] M=3 thresholds on max detections per image
    #  iouType    - ['segm'] set iouType to 'segm', 'bbox', 'keypoints' or 'densepose'
    #  iouType replaced the now DEPRECATED useSegm parameter.
    #  useCats    - [1] if true use category labels for evaluation
    # Note: if useCats=0 category labels are ignored as in proposal scoring.
    # Note: multiple areaRngs [Ax2] and maxDets [Mx1] can be specified.
    #
    # evaluate(): evaluates detections on every image and every category and
    # concats the results into the "evalImgs" with fields:
    #  dtIds      - [1xD] id for each of the D detections (dt)
    #  gtIds      - [1xG] id for each of the G ground truths (gt)
    #  dtMatches  - [TxD] matching gt id at each IoU or 0
    #  gtMatches  - [TxG] matching dt id at each IoU or 0
    #  dtScores   - [1xD] confidence of each dt
    #  gtIgnore   - [1xG] ignore flag for each gt
    #  dtIgnore   - [TxD] ignore flag for each dt at each IoU
    #
    # accumulate(): accumulates the per-image, per-category evaluation
    # results in "evalImgs" into the dictionary "eval" with fields:
    #  params     - parameters used for evaluation
    #  date       - date evaluation was performed
    #  counts     - [T,R,K,A,M] parameter dimensions (see above)
    #  precision  - [TxRxKxAxM] precision for every evaluation setting
    #  recall     - [TxKxAxM] max recall for every evaluation setting
    # Note: precision and recall==-1 for settings with no gt objects.
    #
    # See also coco, mask, pycocoDemo, pycocoEvalDemo
    #
    # Microsoft COCO Toolbox.      version 2.0
    # Data, paper, and tutorials available at:  http://mscoco.org/
    # Code written by Piotr Dollar and Tsung-Yi Lin, 2015.
    # Licensed under the Simplified BSD License [see coco/license.txt]
    def __init__(
        self,
        cocoGt=None,
        cocoDt=None,
        iouType: str = "densepose",
        multi_storage=None,
        embedder=None,
        dpEvalMode: DensePoseEvalMode = DensePoseEvalMode.GPS,
        dpDataMode: DensePoseDataMode = DensePoseDataMode.IUV_DT,
    ):
        """
        Initialize CocoEval using coco APIs for gt and dt
        :param cocoGt: coco object with ground truth annotations
        :param cocoDt: coco object with detection results
        :return: None
        """
        self.cocoGt = cocoGt  # ground truth COCO API
        self.cocoDt = cocoDt  # detections COCO API
        self.multi_storage = multi_storage
        self.embedder = embedder
        self._dpEvalMode = dpEvalMode
        self._dpDataMode = dpDataMode
        self.evalImgs = defaultdict(list)  # per-image per-category eval results [KxAxI]
        self.eval = {}  # accumulated evaluation results
        self._gts = defaultdict(list)  # gt for evaluation
        self._dts = defaultdict(list)  # dt for evaluation
        self.params = Params(iouType=iouType)  # parameters
        self._paramsEval = {}  # parameters for evaluation
        self.stats = []  # result summarization
        self.ious = {}  # ious between all gts and dts
        if cocoGt is not None:
            self.params.imgIds = sorted(cocoGt.getImgIds())
            self.params.catIds = sorted(cocoGt.getCatIds())
        self.ignoreThrBB = 0.7
        self.ignoreThrUV = 0.9

    def _loadGEval(self):
        smpl_subdiv_fpath = PathManager.get_local_path(
            "https://dl.fbaipublicfiles.com/densepose/data/SMPL_subdiv.mat"
        )
        pdist_transform_fpath = PathManager.get_local_path(
            "https://dl.fbaipublicfiles.com/densepose/data/SMPL_SUBDIV_TRANSFORM.mat"
        )
        pdist_matrix_fpath = PathManager.get_local_path(
            "https://dl.fbaipublicfiles.com/densepose/data/Pdist_matrix.pkl", timeout_sec=120
        )
        SMPL_subdiv = loadmat(smpl_subdiv_fpath)
        self.PDIST_transform = loadmat(pdist_transform_fpath)
        self.PDIST_transform = self.PDIST_transform["index"].squeeze()
        UV = np.array([SMPL_subdiv["U_subdiv"], SMPL_subdiv["V_subdiv"]]).squeeze()
        ClosestVertInds = np.arange(UV.shape[1]) + 1
        self.Part_UVs = []
        self.Part_ClosestVertInds = []
        for i in np.arange(24):
            self.Part_UVs.append(UV[:, SMPL_subdiv["Part_ID_subdiv"].squeeze() == (i + 1)])
            self.Part_ClosestVertInds.append(
                ClosestVertInds[SMPL_subdiv["Part_ID_subdiv"].squeeze() == (i + 1)]
            )

        with open(pdist_matrix_fpath, "rb") as hFile:
            arrays = pickle.load(hFile, encoding="latin1")
        self.Pdist_matrix = arrays["Pdist_matrix"]
        self.Part_ids = np.array(SMPL_subdiv["Part_ID_subdiv"].squeeze())
        # Mean geodesic distances for parts.
        self.Mean_Distances = np.array([0, 0.351, 0.107, 0.126, 0.237, 0.173, 0.142, 0.128, 0.150])
        # Coarse Part labels.
        self.CoarseParts = np.array(
            [0, 1, 1, 2, 2, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8]
        )

    def _prepare(self):
        """
        Prepare ._gts and ._dts for evaluation based on params
        :return: None
        """

        def _toMask(anns, coco):
            # modify ann['segmentation'] by reference
            for ann in anns:
                # safeguard for invalid segmentation annotation;
                # annotations containing empty lists exist in the posetrack
                # dataset. This is not a correct segmentation annotation
                # in terms of COCO format; we need to deal with it somehow
                segm = ann["segmentation"]
                if type(segm) == list and len(segm) == 0:
                    ann["segmentation"] = None
                    continue
                rle = coco.annToRLE(ann)
                ann["segmentation"] = rle

        def _getIgnoreRegion(iid, coco):
            img = coco.imgs[iid]

            if "ignore_regions_x" not in img.keys():
                return None

            if len(img["ignore_regions_x"]) == 0:
                return None

            rgns_merged = [
                [v for xy in zip(region_x, region_y) for v in xy]
                for region_x, region_y in zip(img["ignore_regions_x"], img["ignore_regions_y"])
            ]
            rles = maskUtils.frPyObjects(rgns_merged, img["height"], img["width"])
            rle = maskUtils.merge(rles)
            return maskUtils.decode(rle)

        def _checkIgnore(dt, iregion):
            if iregion is None:
                return True

            bb = np.array(dt["bbox"]).astype(int)
            x1, y1, x2, y2 = bb[0], bb[1], bb[0] + bb[2], bb[1] + bb[3]
            x2 = min([x2, iregion.shape[1]])
            y2 = min([y2, iregion.shape[0]])

            if bb[2] * bb[3] == 0:
                return False

            crop_iregion = iregion[y1:y2, x1:x2]

            if crop_iregion.sum() == 0:
                return True

            if "densepose" not in dt.keys():  # filtering boxes
                return crop_iregion.sum() / bb[2] / bb[3] < self.ignoreThrBB

            # filtering UVs
            ignoremask = np.require(crop_iregion, requirements=["F"])
            mask = self._extract_mask(dt)
            uvmask = np.require(np.asarray(mask > 0), dtype=np.uint8, requirements=["F"])
            uvmask_ = maskUtils.encode(uvmask)
            ignoremask_ = maskUtils.encode(ignoremask)
            uviou = maskUtils.iou([uvmask_], [ignoremask_], [1])[0]
            return uviou < self.ignoreThrUV

        p = self.params

        if p.useCats:
            gts = self.cocoGt.loadAnns(self.cocoGt.getAnnIds(imgIds=p.imgIds, catIds=p.catIds))
            dts = self.cocoDt.loadAnns(self.cocoDt.getAnnIds(imgIds=p.imgIds, catIds=p.catIds))
        else:
            gts = self.cocoGt.loadAnns(self.cocoGt.getAnnIds(imgIds=p.imgIds))
            dts = self.cocoDt.loadAnns(self.cocoDt.getAnnIds(imgIds=p.imgIds))

        imns = self.cocoGt.loadImgs(p.imgIds)
        self.size_mapping = {}
        for im in imns:
            self.size_mapping[im["id"]] = [im["height"], im["width"]]

        # if iouType == 'uv', add point gt annotations
        if p.iouType == "densepose":
            self._loadGEval()

        # convert ground truth to mask if iouType == 'segm'
        if p.iouType == "segm":
            _toMask(gts, self.cocoGt)
            _toMask(dts, self.cocoDt)

        # set ignore flag
        for gt in gts:
            gt["ignore"] = gt["ignore"] if "ignore" in gt else 0
            gt["ignore"] = "iscrowd" in gt and gt["iscrowd"]
            if p.iouType == "keypoints":
                gt["ignore"] = (gt["num_keypoints"] == 0) or gt["ignore"]
            if p.iouType == "densepose":
                gt["ignore"] = ("dp_x" in gt) == 0
            if p.iouType == "segm":
                gt["ignore"] = gt["segmentation"] is None

        self._gts = defaultdict(list)  # gt for evaluation
        self._dts = defaultdict(list)  # dt for evaluation
        self._igrgns = defaultdict(list)

        for gt in gts:
            iid = gt["image_id"]
            if iid not in self._igrgns.keys():
                self._igrgns[iid] = _getIgnoreRegion(iid, self.cocoGt)
            if _checkIgnore(gt, self._igrgns[iid]):
                self._gts[iid, gt["category_id"]].append(gt)
        for dt in dts:
            iid = dt["image_id"]
            if (iid not in self._igrgns) or _checkIgnore(dt, self._igrgns[iid]):
                self._dts[iid, dt["category_id"]].append(dt)

        self.evalImgs = defaultdict(list)  # per-image per-category evaluation results
        self.eval = {}  # accumulated evaluation results

    def evaluate(self):
        """
        Run per image evaluation on given images and store results (a list of dict) in self.evalImgs
        :return: None
        """
        tic = time.time()
        logger.info("Running per image DensePose evaluation... {}".format(self.params.iouType))
        p = self.params
        # add backward compatibility if useSegm is specified in params
        if p.useSegm is not None:
            p.iouType = "segm" if p.useSegm == 1 else "bbox"
            logger.info("useSegm (deprecated) is not None. Running DensePose evaluation")
        p.imgIds = list(np.unique(p.imgIds))
        if p.useCats:
            p.catIds = list(np.unique(p.catIds))
        p.maxDets = sorted(p.maxDets)
        self.params = p

        self._prepare()
        # loop through images, area range, max detection number
        catIds = p.catIds if p.useCats else [-1]

        if p.iouType in ["segm", "bbox"]:
            computeIoU = self.computeIoU
        elif p.iouType == "keypoints":
            computeIoU = self.computeOks
        elif p.iouType == "densepose":
            computeIoU = self.computeOgps
            if self._dpEvalMode in {DensePoseEvalMode.GPSM, DensePoseEvalMode.IOU}:
                self.real_ious = {
                    (imgId, catId): self.computeDPIoU(imgId, catId)
                    for imgId in p.imgIds
                    for catId in catIds
                }

        self.ious = {
            (imgId, catId): computeIoU(imgId, catId) for imgId in p.imgIds for catId in catIds
        }

        evaluateImg = self.evaluateImg
        maxDet = p.maxDets[-1]
        self.evalImgs = [
            evaluateImg(imgId, catId, areaRng, maxDet)
            for catId in catIds
            for areaRng in p.areaRng
            for imgId in p.imgIds
        ]
        self._paramsEval = copy.deepcopy(self.params)
        toc = time.time()
        logger.info("DensePose evaluation DONE (t={:0.2f}s).".format(toc - tic))

    def getDensePoseMask(self, polys):
        maskGen = np.zeros([256, 256])
        stop = min(len(polys) + 1, 15)
        for i in range(1, stop):
            if polys[i - 1]:
                currentMask = maskUtils.decode(polys[i - 1])
                maskGen[currentMask > 0] = i
        return maskGen

    def _generate_rlemask_on_image(self, mask, imgId, data):
        bbox_xywh = np.array(data["bbox"])
        x, y, w, h = bbox_xywh
        im_h, im_w = self.size_mapping[imgId]
        im_mask = np.zeros((im_h, im_w), dtype=np.uint8)
        if mask is not None:
            x0 = max(int(x), 0)
            x1 = min(int(x + w), im_w, int(x) + mask.shape[1])
            y0 = max(int(y), 0)
            y1 = min(int(y + h), im_h, int(y) + mask.shape[0])
            y = int(y)
            x = int(x)
            im_mask[y0:y1, x0:x1] = mask[y0 - y : y1 - y, x0 - x : x1 - x]
        im_mask = np.require(np.asarray(im_mask > 0), dtype=np.uint8, requirements=["F"])
        rle_mask = maskUtils.encode(np.array(im_mask[:, :, np.newaxis], order="F"))[0]
        return rle_mask

    def computeDPIoU(self, imgId, catId):
        p = self.params
        if p.useCats:
            gt = self._gts[imgId, catId]
            dt = self._dts[imgId, catId]
        else:
            gt = [_ for cId in p.catIds for _ in self._gts[imgId, cId]]
            dt = [_ for cId in p.catIds for _ in self._dts[imgId, cId]]
        if len(gt) == 0 and len(dt) == 0:
            return []
        inds = np.argsort([-d["score"] for d in dt], kind="mergesort")
        dt = [dt[i] for i in inds]
        if len(dt) > p.maxDets[-1]:
            dt = dt[0 : p.maxDets[-1]]

        gtmasks = []
        for g in gt:
            if DensePoseDataRelative.S_KEY in g:
                # convert DensePose mask to a binary mask
                mask = np.minimum(self.getDensePoseMask(g[DensePoseDataRelative.S_KEY]), 1.0)
                _, _, w, h = g["bbox"]
                scale_x = float(max(w, 1)) / mask.shape[1]
                scale_y = float(max(h, 1)) / mask.shape[0]
                mask = spzoom(mask, (scale_y, scale_x), order=1, prefilter=False)
                mask = np.array(mask > 0.5, dtype=np.uint8)
                rle_mask = self._generate_rlemask_on_image(mask, imgId, g)
            elif "segmentation" in g:
                segmentation = g["segmentation"]
                if isinstance(segmentation, list) and segmentation:
                    # polygons
                    im_h, im_w = self.size_mapping[imgId]
                    rles = maskUtils.frPyObjects(segmentation, im_h, im_w)
                    rle_mask = maskUtils.merge(rles)
                elif isinstance(segmentation, dict):
                    if isinstance(segmentation["counts"], list):
                        # uncompressed RLE
                        im_h, im_w = self.size_mapping[imgId]
                        rle_mask = maskUtils.frPyObjects(segmentation, im_h, im_w)
                    else:
                        # compressed RLE
                        rle_mask = segmentation
                else:
                    rle_mask = self._generate_rlemask_on_image(None, imgId, g)
            else:
                rle_mask = self._generate_rlemask_on_image(None, imgId, g)
            gtmasks.append(rle_mask)

        dtmasks = []
        for d in dt:
            mask = self._extract_mask(d)
            mask = np.require(np.asarray(mask > 0), dtype=np.uint8, requirements=["F"])
            rle_mask = self._generate_rlemask_on_image(mask, imgId, d)
            dtmasks.append(rle_mask)

        # compute iou between each dt and gt region
        iscrowd = [int(o.get("iscrowd", 0)) for o in gt]
        iousDP = maskUtils.iou(dtmasks, gtmasks, iscrowd)
        return iousDP

    def computeIoU(self, imgId, catId):
        p = self.params
        if p.useCats:
            gt = self._gts[imgId, catId]
            dt = self._dts[imgId, catId]
        else:
            gt = [_ for cId in p.catIds for _ in self._gts[imgId, cId]]
            dt = [_ for cId in p.catIds for _ in self._dts[imgId, cId]]
        if len(gt) == 0 and len(dt) == 0:
            return []
        inds = np.argsort([-d["score"] for d in dt], kind="mergesort")
        dt = [dt[i] for i in inds]
        if len(dt) > p.maxDets[-1]:
            dt = dt[0 : p.maxDets[-1]]

        if p.iouType == "segm":
            g = [g["segmentation"] for g in gt if g["segmentation"] is not None]
            d = [d["segmentation"] for d in dt if d["segmentation"] is not None]
        elif p.iouType == "bbox":
            g = [g["bbox"] for g in gt]
            d = [d["bbox"] for d in dt]
        else:
            raise Exception("unknown iouType for iou computation")

        # compute iou between each dt and gt region
        iscrowd = [int(o.get("iscrowd", 0)) for o in gt]
        ious = maskUtils.iou(d, g, iscrowd)
        return ious

    def computeOks(self, imgId, catId):
        p = self.params
        # dimension here should be Nxm
        gts = self._gts[imgId, catId]
        dts = self._dts[imgId, catId]
        inds = np.argsort([-d["score"] for d in dts], kind="mergesort")
        dts = [dts[i] for i in inds]
        if len(dts) > p.maxDets[-1]:
            dts = dts[0 : p.maxDets[-1]]
        # if len(gts) == 0 and len(dts) == 0:
        if len(gts) == 0 or len(dts) == 0:
            return []
        ious = np.zeros((len(dts), len(gts)))
        sigmas = (
            np.array(
                [
                    0.26,
                    0.25,
                    0.25,
                    0.35,
                    0.35,
                    0.79,
                    0.79,
                    0.72,
                    0.72,
                    0.62,
                    0.62,
                    1.07,
                    1.07,
                    0.87,
                    0.87,
                    0.89,
                    0.89,
                ]
            )
            / 10.0
        )
        vars = (sigmas * 2) ** 2
        k = len(sigmas)
        # compute oks between each detection and ground truth object
        for j, gt in enumerate(gts):
            # create bounds for ignore regions(double the gt bbox)
            g = np.array(gt["keypoints"])
            xg = g[0::3]
            yg = g[1::3]
            vg = g[2::3]
            k1 = np.count_nonzero(vg > 0)
            bb = gt["bbox"]
            x0 = bb[0] - bb[2]
            x1 = bb[0] + bb[2] * 2
            y0 = bb[1] - bb[3]
            y1 = bb[1] + bb[3] * 2
            for i, dt in enumerate(dts):
                d = np.array(dt["keypoints"])
                xd = d[0::3]
                yd = d[1::3]
                if k1 > 0:
                    # measure the per-keypoint distance if keypoints visible
                    dx = xd - xg
                    dy = yd - yg
                else:
                    # measure minimum distance to keypoints in (x0,y0) & (x1,y1)
                    z = np.zeros(k)
                    dx = np.max((z, x0 - xd), axis=0) + np.max((z, xd - x1), axis=0)
                    dy = np.max((z, y0 - yd), axis=0) + np.max((z, yd - y1), axis=0)
                e = (dx**2 + dy**2) / vars / (gt["area"] + np.spacing(1)) / 2
                if k1 > 0:
                    e = e[vg > 0]
                ious[i, j] = np.sum(np.exp(-e)) / e.shape[0]
        return ious

    def _extract_mask(self, dt: Dict[str, Any]) -> np.ndarray:
        if "densepose" in dt:
            densepose_results_quantized = dt["densepose"]
            return densepose_results_quantized.labels_uv_uint8[0].numpy()
        elif "cse_mask" in dt:
            return dt["cse_mask"]
        elif "coarse_segm" in dt:
            dy = max(int(dt["bbox"][3]), 1)
            dx = max(int(dt["bbox"][2]), 1)
            return (
                F.interpolate(
                    dt["coarse_segm"].unsqueeze(0),
                    (dy, dx),
                    mode="bilinear",
                    align_corners=False,
                )
                .squeeze(0)
                .argmax(0)
                .numpy()
                .astype(np.uint8)
            )
        elif "record_id" in dt:
            assert (
                self.multi_storage is not None
            ), f"Storage record id encountered in a detection {dt}, but no storage provided!"
            record = self.multi_storage.get(dt["rank"], dt["record_id"])
            coarse_segm = record["coarse_segm"]
            dy = max(int(dt["bbox"][3]), 1)
            dx = max(int(dt["bbox"][2]), 1)
            return (
                F.interpolate(
                    coarse_segm.unsqueeze(0),
                    (dy, dx),
                    mode="bilinear",
                    align_corners=False,
                )
                .squeeze(0)
                .argmax(0)
                .numpy()
                .astype(np.uint8)
            )
        else:
            raise Exception(f"No mask data in the detection: {dt}")
        raise ValueError('The prediction dict needs to contain either "densepose" or "cse_mask"')

    def _extract_iuv(
        self, densepose_data: np.ndarray, py: np.ndarray, px: np.ndarray, gt: Dict[str, Any]
    ) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
        """
        Extract arrays of I, U and V values at given points as numpy arrays
        given the data mode stored in self._dpDataMode
        """
        if self._dpDataMode == DensePoseDataMode.IUV_DT:
            # estimated labels and UV (default)
            ipoints = densepose_data[0, py, px]
            upoints = densepose_data[1, py, px] / 255.0  # convert from uint8 by /255.
            vpoints = densepose_data[2, py, px] / 255.0
        elif self._dpDataMode == DensePoseDataMode.IUV_GT:
            # ground truth
            ipoints = np.array(gt["dp_I"])
            upoints = np.array(gt["dp_U"])
            vpoints = np.array(gt["dp_V"])
        elif self._dpDataMode == DensePoseDataMode.I_GT_UV_0:
            # ground truth labels, UV = 0
            ipoints = np.array(gt["dp_I"])
            upoints = upoints * 0.0
            vpoints = vpoints * 0.0
        elif self._dpDataMode == DensePoseDataMode.I_GT_UV_DT:
            # ground truth labels, estimated UV
            ipoints = np.array(gt["dp_I"])
            upoints = densepose_data[1, py, px] / 255.0  # convert from uint8 by /255.
            vpoints = densepose_data[2, py, px] / 255.0
        elif self._dpDataMode == DensePoseDataMode.I_DT_UV_0:
            # estimated labels, UV = 0
            ipoints = densepose_data[0, py, px]
            upoints = upoints * 0.0
            vpoints = vpoints * 0.0
        else:
            raise ValueError(f"Unknown data mode: {self._dpDataMode}")
        return ipoints, upoints, vpoints

    def computeOgps_single_pair(self, dt, gt, py, px, pt_mask):
        if "densepose" in dt:
            ipoints, upoints, vpoints = self.extract_iuv_from_quantized(dt, gt, py, px, pt_mask)
            return self.computeOgps_single_pair_iuv(dt, gt, ipoints, upoints, vpoints)
        elif "u" in dt:
            ipoints, upoints, vpoints = self.extract_iuv_from_raw(dt, gt, py, px, pt_mask)
            return self.computeOgps_single_pair_iuv(dt, gt, ipoints, upoints, vpoints)
        elif "record_id" in dt:
            assert (
                self.multi_storage is not None
            ), f"Storage record id encountered in detection {dt}, but no storage provided!"
            record = self.multi_storage.get(dt["rank"], dt["record_id"])
            record["bbox"] = dt["bbox"]
            if "u" in record:
                ipoints, upoints, vpoints = self.extract_iuv_from_raw(record, gt, py, px, pt_mask)
                return self.computeOgps_single_pair_iuv(dt, gt, ipoints, upoints, vpoints)
            elif "embedding" in record:
                return self.computeOgps_single_pair_cse(
                    dt,
                    gt,
                    py,
                    px,
                    pt_mask,
                    record["coarse_segm"],
                    record["embedding"],
                    record["bbox"],
                )
            else:
                raise Exception(f"Unknown record format: {record}")
        elif "embedding" in dt:
            return self.computeOgps_single_pair_cse(
                dt, gt, py, px, pt_mask, dt["coarse_segm"], dt["embedding"], dt["bbox"]
            )
        raise Exception(f"Unknown detection format: {dt}")

    def extract_iuv_from_quantized(self, dt, gt, py, px, pt_mask):
        densepose_results_quantized = dt["densepose"]
        ipoints, upoints, vpoints = self._extract_iuv(
            densepose_results_quantized.labels_uv_uint8.numpy(), py, px, gt
        )
        ipoints[pt_mask == -1] = 0
        return ipoints, upoints, vpoints

    def extract_iuv_from_raw(self, dt, gt, py, px, pt_mask):
        labels_dt = resample_fine_and_coarse_segm_tensors_to_bbox(
            dt["fine_segm"].unsqueeze(0),
            dt["coarse_segm"].unsqueeze(0),
            dt["bbox"],
        )
        uv = resample_uv_tensors_to_bbox(
            dt["u"].unsqueeze(0), dt["v"].unsqueeze(0), labels_dt.squeeze(0), dt["bbox"]
        )
        labels_uv_uint8 = torch.cat((labels_dt.byte(), (uv * 255).clamp(0, 255).byte()))
        ipoints, upoints, vpoints = self._extract_iuv(labels_uv_uint8.numpy(), py, px, gt)
        ipoints[pt_mask == -1] = 0
        return ipoints, upoints, vpoints

    def computeOgps_single_pair_iuv(self, dt, gt, ipoints, upoints, vpoints):
        cVertsGT, ClosestVertsGTTransformed = self.findAllClosestVertsGT(gt)
        cVerts = self.findAllClosestVertsUV(upoints, vpoints, ipoints)
        # Get pairwise geodesic distances between gt and estimated mesh points.
        dist = self.getDistancesUV(ClosestVertsGTTransformed, cVerts)
        # Compute the Ogps measure.
        # Find the mean geodesic normalization distance for
        # each GT point, based on which part it is on.
        Current_Mean_Distances = self.Mean_Distances[
            self.CoarseParts[self.Part_ids[cVertsGT[cVertsGT > 0].astype(int) - 1]]
        ]
        return dist, Current_Mean_Distances

    def computeOgps_single_pair_cse(
        self, dt, gt, py, px, pt_mask, coarse_segm, embedding, bbox_xywh_abs
    ):
        # 0-based mesh vertex indices
        cVertsGT = torch.as_tensor(gt["dp_vertex"], dtype=torch.int64)
        # label for each pixel of the bbox, [H, W] tensor of long
        labels_dt = resample_coarse_segm_tensor_to_bbox(
            coarse_segm.unsqueeze(0), bbox_xywh_abs
        ).squeeze(0)
        x, y, w, h = bbox_xywh_abs
        # embedding for each pixel of the bbox, [D, H, W] tensor of float32
        embedding = F.interpolate(
            embedding.unsqueeze(0), (int(h), int(w)), mode="bilinear", align_corners=False
        ).squeeze(0)
        # valid locations py, px
        py_pt = torch.from_numpy(py[pt_mask > -1])
        px_pt = torch.from_numpy(px[pt_mask > -1])
        cVerts = torch.ones_like(cVertsGT) * -1
        cVerts[pt_mask > -1] = self.findClosestVertsCse(
            embedding, py_pt, px_pt, labels_dt, gt["ref_model"]
        )
        # Get pairwise geodesic distances between gt and estimated mesh points.
        dist = self.getDistancesCse(cVertsGT, cVerts, gt["ref_model"])
        # normalize distances
        if (gt["ref_model"] == "smpl_27554") and ("dp_I" in gt):
            Current_Mean_Distances = self.Mean_Distances[
                self.CoarseParts[np.array(gt["dp_I"], dtype=int)]
            ]
        else:
            Current_Mean_Distances = 0.255
        return dist, Current_Mean_Distances

    def computeOgps(self, imgId, catId):
        p = self.params
        # dimension here should be Nxm
        g = self._gts[imgId, catId]
        d = self._dts[imgId, catId]
        inds = np.argsort([-d_["score"] for d_ in d], kind="mergesort")
        d = [d[i] for i in inds]
        if len(d) > p.maxDets[-1]:
            d = d[0 : p.maxDets[-1]]
        # if len(gts) == 0 and len(dts) == 0:
        if len(g) == 0 or len(d) == 0:
            return []
        ious = np.zeros((len(d), len(g)))
        # compute opgs between each detection and ground truth object
        # sigma = self.sigma #0.255 # dist = 0.3m corresponds to ogps = 0.5
        # 1 # dist = 0.3m corresponds to ogps = 0.96
        # 1.45 # dist = 1.7m (person height) corresponds to ogps = 0.5)
        for j, gt in enumerate(g):
            if not gt["ignore"]:
                g_ = gt["bbox"]
                for i, dt in enumerate(d):
                    #
                    dy = int(dt["bbox"][3])
                    dx = int(dt["bbox"][2])
                    dp_x = np.array(gt["dp_x"]) * g_[2] / 255.0
                    dp_y = np.array(gt["dp_y"]) * g_[3] / 255.0
                    py = (dp_y + g_[1] - dt["bbox"][1]).astype(int)
                    px = (dp_x + g_[0] - dt["bbox"][0]).astype(int)
                    #
                    pts = np.zeros(len(px))
                    pts[px >= dx] = -1
                    pts[py >= dy] = -1
                    pts[px < 0] = -1
                    pts[py < 0] = -1
                    if len(pts) < 1:
                        ogps = 0.0
                    elif np.max(pts) == -1:
                        ogps = 0.0
                    else:
                        px[pts == -1] = 0
                        py[pts == -1] = 0
                        dists_between_matches, dist_norm_coeffs = self.computeOgps_single_pair(
                            dt, gt, py, px, pts
                        )
                        # Compute gps
                        ogps_values = np.exp(
                            -(dists_between_matches**2) / (2 * (dist_norm_coeffs**2))
                        )
                        #
                        ogps = np.mean(ogps_values) if len(ogps_values) > 0 else 0.0
                    ious[i, j] = ogps

        gbb = [gt["bbox"] for gt in g]
        dbb = [dt["bbox"] for dt in d]

        # compute iou between each dt and gt region
        iscrowd = [int(o.get("iscrowd", 0)) for o in g]
        ious_bb = maskUtils.iou(dbb, gbb, iscrowd)
        return ious, ious_bb

    def evaluateImg(self, imgId, catId, aRng, maxDet):
        """
        perform evaluation for single category and image
        :return: dict (single image results)
        """

        p = self.params
        if p.useCats:
            gt = self._gts[imgId, catId]
            dt = self._dts[imgId, catId]
        else:
            gt = [_ for cId in p.catIds for _ in self._gts[imgId, cId]]
            dt = [_ for cId in p.catIds for _ in self._dts[imgId, cId]]
        if len(gt) == 0 and len(dt) == 0:
            return None

        for g in gt:
            # g['_ignore'] = g['ignore']
            if g["ignore"] or (g["area"] < aRng[0] or g["area"] > aRng[1]):
                g["_ignore"] = True
            else:
                g["_ignore"] = False

        # sort dt highest score first, sort gt ignore last
        gtind = np.argsort([g["_ignore"] for g in gt], kind="mergesort")
        gt = [gt[i] for i in gtind]
        dtind = np.argsort([-d["score"] for d in dt], kind="mergesort")
        dt = [dt[i] for i in dtind[0:maxDet]]
        iscrowd = [int(o.get("iscrowd", 0)) for o in gt]
        # load computed ious
        if p.iouType == "densepose":
            # print('Checking the length', len(self.ious[imgId, catId]))
            # if len(self.ious[imgId, catId]) == 0:
            #    print(self.ious[imgId, catId])
            ious = (
                self.ious[imgId, catId][0][:, gtind]
                if len(self.ious[imgId, catId]) > 0
                else self.ious[imgId, catId]
            )
            ioubs = (
                self.ious[imgId, catId][1][:, gtind]
                if len(self.ious[imgId, catId]) > 0
                else self.ious[imgId, catId]
            )
            if self._dpEvalMode in {DensePoseEvalMode.GPSM, DensePoseEvalMode.IOU}:
                iousM = (
                    self.real_ious[imgId, catId][:, gtind]
                    if len(self.real_ious[imgId, catId]) > 0
                    else self.real_ious[imgId, catId]
                )
        else:
            ious = (
                self.ious[imgId, catId][:, gtind]
                if len(self.ious[imgId, catId]) > 0
                else self.ious[imgId, catId]
            )

        T = len(p.iouThrs)
        G = len(gt)
        D = len(dt)
        gtm = np.zeros((T, G))
        dtm = np.zeros((T, D))
        gtIg = np.array([g["_ignore"] for g in gt])
        dtIg = np.zeros((T, D))
        if np.all(gtIg) and p.iouType == "densepose":
            dtIg = np.logical_or(dtIg, True)

        if len(ious) > 0:  # and not p.iouType == 'densepose':
            for tind, t in enumerate(p.iouThrs):
                for dind, d in enumerate(dt):
                    # information about best match so far (m=-1 -> unmatched)
                    iou = min([t, 1 - 1e-10])
                    m = -1
                    for gind, _g in enumerate(gt):
                        # if this gt already matched, and not a crowd, continue
                        if gtm[tind, gind] > 0 and not iscrowd[gind]:
                            continue
                        # if dt matched to reg gt, and on ignore gt, stop
                        if m > -1 and gtIg[m] == 0 and gtIg[gind] == 1:
                            break
                        if p.iouType == "densepose":
                            if self._dpEvalMode == DensePoseEvalMode.GPSM:
                                new_iou = np.sqrt(iousM[dind, gind] * ious[dind, gind])
                            elif self._dpEvalMode == DensePoseEvalMode.IOU:
                                new_iou = iousM[dind, gind]
                            elif self._dpEvalMode == DensePoseEvalMode.GPS:
                                new_iou = ious[dind, gind]
                        else:
                            new_iou = ious[dind, gind]
                        if new_iou < iou:
                            continue
                        if new_iou == 0.0:
                            continue
                        # if match successful and best so far, store appropriately
                        iou = new_iou
                        m = gind
                    # if match made store id of match for both dt and gt
                    if m == -1:
                        continue
                    dtIg[tind, dind] = gtIg[m]
                    dtm[tind, dind] = gt[m]["id"]
                    gtm[tind, m] = d["id"]

        if p.iouType == "densepose":
            if not len(ioubs) == 0:
                for dind, d in enumerate(dt):
                    # information about best match so far (m=-1 -> unmatched)
                    if dtm[tind, dind] == 0:
                        ioub = 0.8
                        m = -1
                        for gind, _g in enumerate(gt):
                            # if this gt already matched, and not a crowd, continue
                            if gtm[tind, gind] > 0 and not iscrowd[gind]:
                                continue
                            # continue to next gt unless better match made
                            if ioubs[dind, gind] < ioub:
                                continue
                            # if match successful and best so far, store appropriately
                            ioub = ioubs[dind, gind]
                            m = gind
                            # if match made store id of match for both dt and gt
                        if m > -1:
                            dtIg[:, dind] = gtIg[m]
                            if gtIg[m]:
                                dtm[tind, dind] = gt[m]["id"]
                                gtm[tind, m] = d["id"]
        # set unmatched detections outside of area range to ignore
        a = np.array([d["area"] < aRng[0] or d["area"] > aRng[1] for d in dt]).reshape((1, len(dt)))
        dtIg = np.logical_or(dtIg, np.logical_and(dtm == 0, np.repeat(a, T, 0)))
        # store results for given image and category
        # print('Done with the function', len(self.ious[imgId, catId]))
        return {
            "image_id": imgId,
            "category_id": catId,
            "aRng": aRng,
            "maxDet": maxDet,
            "dtIds": [d["id"] for d in dt],
            "gtIds": [g["id"] for g in gt],
            "dtMatches": dtm,
            "gtMatches": gtm,
            "dtScores": [d["score"] for d in dt],
            "gtIgnore": gtIg,
            "dtIgnore": dtIg,
        }

    def accumulate(self, p=None):
        """
        Accumulate per image evaluation results and store the result in self.eval
        :param p: input params for evaluation
        :return: None
        """
        logger.info("Accumulating evaluation results...")
        tic = time.time()
        if not self.evalImgs:
            logger.info("Please run evaluate() first")
        # allows input customized parameters
        if p is None:
            p = self.params
        p.catIds = p.catIds if p.useCats == 1 else [-1]
        T = len(p.iouThrs)
        R = len(p.recThrs)
        K = len(p.catIds) if p.useCats else 1
        A = len(p.areaRng)
        M = len(p.maxDets)
        precision = -(np.ones((T, R, K, A, M)))  # -1 for the precision of absent categories
        recall = -(np.ones((T, K, A, M)))

        # create dictionary for future indexing
        logger.info("Categories: {}".format(p.catIds))
        _pe = self._paramsEval
        catIds = _pe.catIds if _pe.useCats else [-1]
        setK = set(catIds)
        setA = set(map(tuple, _pe.areaRng))
        setM = set(_pe.maxDets)
        setI = set(_pe.imgIds)
        # get inds to evaluate
        k_list = [n for n, k in enumerate(p.catIds) if k in setK]
        m_list = [m for n, m in enumerate(p.maxDets) if m in setM]
        a_list = [n for n, a in enumerate(map(lambda x: tuple(x), p.areaRng)) if a in setA]
        i_list = [n for n, i in enumerate(p.imgIds) if i in setI]
        I0 = len(_pe.imgIds)
        A0 = len(_pe.areaRng)
        # retrieve E at each category, area range, and max number of detections
        for k, k0 in enumerate(k_list):
            Nk = k0 * A0 * I0
            for a, a0 in enumerate(a_list):
                Na = a0 * I0
                for m, maxDet in enumerate(m_list):
                    E = [self.evalImgs[Nk + Na + i] for i in i_list]
                    E = [e for e in E if e is not None]
                    if len(E) == 0:
                        continue
                    dtScores = np.concatenate([e["dtScores"][0:maxDet] for e in E])

                    # different sorting method generates slightly different results.
                    # mergesort is used to be consistent as Matlab implementation.
                    inds = np.argsort(-dtScores, kind="mergesort")

                    dtm = np.concatenate([e["dtMatches"][:, 0:maxDet] for e in E], axis=1)[:, inds]
                    dtIg = np.concatenate([e["dtIgnore"][:, 0:maxDet] for e in E], axis=1)[:, inds]
                    gtIg = np.concatenate([e["gtIgnore"] for e in E])
                    npig = np.count_nonzero(gtIg == 0)
                    if npig == 0:
                        continue
                    tps = np.logical_and(dtm, np.logical_not(dtIg))
                    fps = np.logical_and(np.logical_not(dtm), np.logical_not(dtIg))
                    tp_sum = np.cumsum(tps, axis=1).astype(dtype=float)
                    fp_sum = np.cumsum(fps, axis=1).astype(dtype=float)
                    for t, (tp, fp) in enumerate(zip(tp_sum, fp_sum)):
                        tp = np.array(tp)
                        fp = np.array(fp)
                        nd = len(tp)
                        rc = tp / npig
                        pr = tp / (fp + tp + np.spacing(1))
                        q = np.zeros((R,))

                        if nd:
                            recall[t, k, a, m] = rc[-1]
                        else:
                            recall[t, k, a, m] = 0

                        # numpy is slow without cython optimization for accessing elements
                        # use python array gets significant speed improvement
                        pr = pr.tolist()
                        q = q.tolist()

                        for i in range(nd - 1, 0, -1):
                            if pr[i] > pr[i - 1]:
                                pr[i - 1] = pr[i]

                        inds = np.searchsorted(rc, p.recThrs, side="left")
                        try:
                            for ri, pi in enumerate(inds):
                                q[ri] = pr[pi]
                        except Exception:
                            pass
                        precision[t, :, k, a, m] = np.array(q)
        logger.info(
            "Final: max precision {}, min precision {}".format(np.max(precision), np.min(precision))
        )
        self.eval = {
            "params": p,
            "counts": [T, R, K, A, M],
            "date": datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
            "precision": precision,
            "recall": recall,
        }
        toc = time.time()
        logger.info("DONE (t={:0.2f}s).".format(toc - tic))

    def summarize(self):
        """
        Compute and display summary metrics for evaluation results.
        Note this function can *only* be applied on the default parameter setting
        """

        def _summarize(ap=1, iouThr=None, areaRng="all", maxDets=100):
            p = self.params
            iStr = " {:<18} {} @[ {}={:<9} | area={:>6s} | maxDets={:>3d} ] = {:0.3f}"
            titleStr = "Average Precision" if ap == 1 else "Average Recall"
            typeStr = "(AP)" if ap == 1 else "(AR)"
            measure = "IoU"
            if self.params.iouType == "keypoints":
                measure = "OKS"
            elif self.params.iouType == "densepose":
                measure = "OGPS"
            iouStr = (
                "{:0.2f}:{:0.2f}".format(p.iouThrs[0], p.iouThrs[-1])
                if iouThr is None
                else "{:0.2f}".format(iouThr)
            )

            aind = [i for i, aRng in enumerate(p.areaRngLbl) if aRng == areaRng]
            mind = [i for i, mDet in enumerate(p.maxDets) if mDet == maxDets]
            if ap == 1:
                # dimension of precision: [TxRxKxAxM]
                s = self.eval["precision"]
                # IoU
                if iouThr is not None:
                    t = np.where(np.abs(iouThr - p.iouThrs) < 0.001)[0]
                    s = s[t]
                s = s[:, :, :, aind, mind]
            else:
                # dimension of recall: [TxKxAxM]
                s = self.eval["recall"]
                if iouThr is not None:
                    t = np.where(np.abs(iouThr - p.iouThrs) < 0.001)[0]
                    s = s[t]
                s = s[:, :, aind, mind]
            if len(s[s > -1]) == 0:
                mean_s = -1
            else:
                mean_s = np.mean(s[s > -1])
            logger.info(iStr.format(titleStr, typeStr, measure, iouStr, areaRng, maxDets, mean_s))
            return mean_s

        def _summarizeDets():
            stats = np.zeros((12,))
            stats[0] = _summarize(1)
            stats[1] = _summarize(1, iouThr=0.5, maxDets=self.params.maxDets[2])
            stats[2] = _summarize(1, iouThr=0.75, maxDets=self.params.maxDets[2])
            stats[3] = _summarize(1, areaRng="small", maxDets=self.params.maxDets[2])
            stats[4] = _summarize(1, areaRng="medium", maxDets=self.params.maxDets[2])
            stats[5] = _summarize(1, areaRng="large", maxDets=self.params.maxDets[2])
            stats[6] = _summarize(0, maxDets=self.params.maxDets[0])
            stats[7] = _summarize(0, maxDets=self.params.maxDets[1])
            stats[8] = _summarize(0, maxDets=self.params.maxDets[2])
            stats[9] = _summarize(0, areaRng="small", maxDets=self.params.maxDets[2])
            stats[10] = _summarize(0, areaRng="medium", maxDets=self.params.maxDets[2])
            stats[11] = _summarize(0, areaRng="large", maxDets=self.params.maxDets[2])
            return stats

        def _summarizeKps():
            stats = np.zeros((10,))
            stats[0] = _summarize(1, maxDets=20)
            stats[1] = _summarize(1, maxDets=20, iouThr=0.5)
            stats[2] = _summarize(1, maxDets=20, iouThr=0.75)
            stats[3] = _summarize(1, maxDets=20, areaRng="medium")
            stats[4] = _summarize(1, maxDets=20, areaRng="large")
            stats[5] = _summarize(0, maxDets=20)
            stats[6] = _summarize(0, maxDets=20, iouThr=0.5)
            stats[7] = _summarize(0, maxDets=20, iouThr=0.75)
            stats[8] = _summarize(0, maxDets=20, areaRng="medium")
            stats[9] = _summarize(0, maxDets=20, areaRng="large")
            return stats

        def _summarizeUvs():
            stats = [_summarize(1, maxDets=self.params.maxDets[0])]
            min_threshold = self.params.iouThrs.min()
            if min_threshold <= 0.201:
                stats += [_summarize(1, maxDets=self.params.maxDets[0], iouThr=0.2)]
            if min_threshold <= 0.301:
                stats += [_summarize(1, maxDets=self.params.maxDets[0], iouThr=0.3)]
            if min_threshold <= 0.401:
                stats += [_summarize(1, maxDets=self.params.maxDets[0], iouThr=0.4)]
            stats += [
                _summarize(1, maxDets=self.params.maxDets[0], iouThr=0.5),
                _summarize(1, maxDets=self.params.maxDets[0], iouThr=0.75),
                _summarize(1, maxDets=self.params.maxDets[0], areaRng="medium"),
                _summarize(1, maxDets=self.params.maxDets[0], areaRng="large"),
                _summarize(0, maxDets=self.params.maxDets[0]),
                _summarize(0, maxDets=self.params.maxDets[0], iouThr=0.5),
                _summarize(0, maxDets=self.params.maxDets[0], iouThr=0.75),
                _summarize(0, maxDets=self.params.maxDets[0], areaRng="medium"),
                _summarize(0, maxDets=self.params.maxDets[0], areaRng="large"),
            ]
            return np.array(stats)

        def _summarizeUvsOld():
            stats = np.zeros((18,))
            stats[0] = _summarize(1, maxDets=self.params.maxDets[0])
            stats[1] = _summarize(1, maxDets=self.params.maxDets[0], iouThr=0.5)
            stats[2] = _summarize(1, maxDets=self.params.maxDets[0], iouThr=0.55)
            stats[3] = _summarize(1, maxDets=self.params.maxDets[0], iouThr=0.60)
            stats[4] = _summarize(1, maxDets=self.params.maxDets[0], iouThr=0.65)
            stats[5] = _summarize(1, maxDets=self.params.maxDets[0], iouThr=0.70)
            stats[6] = _summarize(1, maxDets=self.params.maxDets[0], iouThr=0.75)
            stats[7] = _summarize(1, maxDets=self.params.maxDets[0], iouThr=0.80)
            stats[8] = _summarize(1, maxDets=self.params.maxDets[0], iouThr=0.85)
            stats[9] = _summarize(1, maxDets=self.params.maxDets[0], iouThr=0.90)
            stats[10] = _summarize(1, maxDets=self.params.maxDets[0], iouThr=0.95)
            stats[11] = _summarize(1, maxDets=self.params.maxDets[0], areaRng="medium")
            stats[12] = _summarize(1, maxDets=self.params.maxDets[0], areaRng="large")
            stats[13] = _summarize(0, maxDets=self.params.maxDets[0])
            stats[14] = _summarize(0, maxDets=self.params.maxDets[0], iouThr=0.5)
            stats[15] = _summarize(0, maxDets=self.params.maxDets[0], iouThr=0.75)
            stats[16] = _summarize(0, maxDets=self.params.maxDets[0], areaRng="medium")
            stats[17] = _summarize(0, maxDets=self.params.maxDets[0], areaRng="large")
            return stats

        if not self.eval:
            raise Exception("Please run accumulate() first")
        iouType = self.params.iouType
        if iouType in ["segm", "bbox"]:
            summarize = _summarizeDets
        elif iouType in ["keypoints"]:
            summarize = _summarizeKps
        elif iouType in ["densepose"]:
            summarize = _summarizeUvs
        self.stats = summarize()

    def __str__(self):
        self.summarize()

    # ================ functions for dense pose ==============================
    def findAllClosestVertsUV(self, U_points, V_points, Index_points):
        ClosestVerts = np.ones(Index_points.shape) * -1
        for i in np.arange(24):
            #
            if (i + 1) in Index_points:
                UVs = np.array(
                    [U_points[Index_points == (i + 1)], V_points[Index_points == (i + 1)]]
                )
                Current_Part_UVs = self.Part_UVs[i]
                Current_Part_ClosestVertInds = self.Part_ClosestVertInds[i]
                D = ssd.cdist(Current_Part_UVs.transpose(), UVs.transpose()).squeeze()
                ClosestVerts[Index_points == (i + 1)] = Current_Part_ClosestVertInds[
                    np.argmin(D, axis=0)
                ]
        ClosestVertsTransformed = self.PDIST_transform[ClosestVerts.astype(int) - 1]
        ClosestVertsTransformed[ClosestVerts < 0] = 0
        return ClosestVertsTransformed

    def findClosestVertsCse(self, embedding, py, px, mask, mesh_name):
        mesh_vertex_embeddings = self.embedder(mesh_name)
        pixel_embeddings = embedding[:, py, px].t().to(device="cuda")
        mask_vals = mask[py, px]
        edm = squared_euclidean_distance_matrix(pixel_embeddings, mesh_vertex_embeddings)
        vertex_indices = edm.argmin(dim=1).cpu()
        vertex_indices[mask_vals <= 0] = -1
        return vertex_indices

    def findAllClosestVertsGT(self, gt):
        #
        I_gt = np.array(gt["dp_I"])
        U_gt = np.array(gt["dp_U"])
        V_gt = np.array(gt["dp_V"])
        #
        # print(I_gt)
        #
        ClosestVertsGT = np.ones(I_gt.shape) * -1
        for i in np.arange(24):
            if (i + 1) in I_gt:
                UVs = np.array([U_gt[I_gt == (i + 1)], V_gt[I_gt == (i + 1)]])
                Current_Part_UVs = self.Part_UVs[i]
                Current_Part_ClosestVertInds = self.Part_ClosestVertInds[i]
                D = ssd.cdist(Current_Part_UVs.transpose(), UVs.transpose()).squeeze()
                ClosestVertsGT[I_gt == (i + 1)] = Current_Part_ClosestVertInds[np.argmin(D, axis=0)]
        #
        ClosestVertsGTTransformed = self.PDIST_transform[ClosestVertsGT.astype(int) - 1]
        ClosestVertsGTTransformed[ClosestVertsGT < 0] = 0
        return ClosestVertsGT, ClosestVertsGTTransformed

    def getDistancesCse(self, cVertsGT, cVerts, mesh_name):
        geodists_vertices = torch.ones_like(cVertsGT) * float("inf")
        selected = (cVertsGT >= 0) * (cVerts >= 0)
        mesh = create_mesh(mesh_name, "cpu")
        geodists_vertices[selected] = mesh.geodists[cVertsGT[selected], cVerts[selected]]
        return geodists_vertices.numpy()

    def getDistancesUV(self, cVertsGT, cVerts):
        #
        n = 27554
        dists = []
        for d in range(len(cVertsGT)):
            if cVertsGT[d] > 0:
                if cVerts[d] > 0:
                    i = cVertsGT[d] - 1
                    j = cVerts[d] - 1
                    if j == i:
                        dists.append(0)
                    elif j > i:
                        ccc = i
                        i = j
                        j = ccc
                        i = n - i - 1
                        j = n - j - 1
                        k = (n * (n - 1) / 2) - (n - i) * ((n - i) - 1) / 2 + j - i - 1
                        k = (n * n - n) / 2 - k - 1
                        dists.append(self.Pdist_matrix[int(k)][0])
                    else:
                        i = n - i - 1
                        j = n - j - 1
                        k = (n * (n - 1) / 2) - (n - i) * ((n - i) - 1) / 2 + j - i - 1
                        k = (n * n - n) / 2 - k - 1
                        dists.append(self.Pdist_matrix[int(k)][0])
                else:
                    dists.append(np.inf)
        return np.atleast_1d(np.array(dists).squeeze())


class Params:
    """
    Params for coco evaluation api
    """

    def setDetParams(self):
        self.imgIds = []
        self.catIds = []
        # np.arange causes trouble.  the data point on arange is slightly larger than the true value
        self.iouThrs = np.linspace(0.5, 0.95, int(np.round((0.95 - 0.5) / 0.05)) + 1, endpoint=True)
        self.recThrs = np.linspace(0.0, 1.00, int(np.round((1.00 - 0.0) / 0.01)) + 1, endpoint=True)
        self.maxDets = [1, 10, 100]
        self.areaRng = [
            [0**2, 1e5**2],
            [0**2, 32**2],
            [32**2, 96**2],
            [96**2, 1e5**2],
        ]
        self.areaRngLbl = ["all", "small", "medium", "large"]
        self.useCats = 1

    def setKpParams(self):
        self.imgIds = []
        self.catIds = []
        # np.arange causes trouble.  the data point on arange is slightly larger than the true value
        self.iouThrs = np.linspace(0.5, 0.95, np.round((0.95 - 0.5) / 0.05) + 1, endpoint=True)
        self.recThrs = np.linspace(0.0, 1.00, np.round((1.00 - 0.0) / 0.01) + 1, endpoint=True)
        self.maxDets = [20]
        self.areaRng = [[0**2, 1e5**2], [32**2, 96**2], [96**2, 1e5**2]]
        self.areaRngLbl = ["all", "medium", "large"]
        self.useCats = 1

    def setUvParams(self):
        self.imgIds = []
        self.catIds = []
        self.iouThrs = np.linspace(0.5, 0.95, int(np.round((0.95 - 0.5) / 0.05)) + 1, endpoint=True)
        self.recThrs = np.linspace(0.0, 1.00, int(np.round((1.00 - 0.0) / 0.01)) + 1, endpoint=True)
        self.maxDets = [20]
        self.areaRng = [[0**2, 1e5**2], [32**2, 96**2], [96**2, 1e5**2]]
        self.areaRngLbl = ["all", "medium", "large"]
        self.useCats = 1

    def __init__(self, iouType="segm"):
        if iouType == "segm" or iouType == "bbox":
            self.setDetParams()
        elif iouType == "keypoints":
            self.setKpParams()
        elif iouType == "densepose":
            self.setUvParams()
        else:
            raise Exception("iouType not supported")
        self.iouType = iouType
        # useSegm is deprecated
        self.useSegm = None