Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,360 Bytes
b213d84 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
# Copyright (c) Facebook, Inc. and its affiliates.
import math
import fvcore.nn.weight_init as weight_init
import torch
import torch.nn.functional as F
from torch import nn
from detectron2.layers import Conv2d, ShapeSpec, get_norm
from .backbone import Backbone
from .build import BACKBONE_REGISTRY
from .resnet import build_resnet_backbone
__all__ = ["build_resnet_fpn_backbone", "build_retinanet_resnet_fpn_backbone", "FPN"]
class FPN(Backbone):
"""
This module implements :paper:`FPN`.
It creates pyramid features built on top of some input feature maps.
"""
_fuse_type: torch.jit.Final[str]
def __init__(
self,
bottom_up,
in_features,
out_channels,
norm="",
top_block=None,
fuse_type="sum",
square_pad=0,
):
"""
Args:
bottom_up (Backbone): module representing the bottom up subnetwork.
Must be a subclass of :class:`Backbone`. The multi-scale feature
maps generated by the bottom up network, and listed in `in_features`,
are used to generate FPN levels.
in_features (list[str]): names of the input feature maps coming
from the backbone to which FPN is attached. For example, if the
backbone produces ["res2", "res3", "res4"], any *contiguous* sublist
of these may be used; order must be from high to low resolution.
out_channels (int): number of channels in the output feature maps.
norm (str): the normalization to use.
top_block (nn.Module or None): if provided, an extra operation will
be performed on the output of the last (smallest resolution)
FPN output, and the result will extend the result list. The top_block
further downsamples the feature map. It must have an attribute
"num_levels", meaning the number of extra FPN levels added by
this block, and "in_feature", which is a string representing
its input feature (e.g., p5).
fuse_type (str): types for fusing the top down features and the lateral
ones. It can be "sum" (default), which sums up element-wise; or "avg",
which takes the element-wise mean of the two.
square_pad (int): If > 0, require input images to be padded to specific square size.
"""
super(FPN, self).__init__()
assert isinstance(bottom_up, Backbone)
assert in_features, in_features
# Feature map strides and channels from the bottom up network (e.g. ResNet)
input_shapes = bottom_up.output_shape()
strides = [input_shapes[f].stride for f in in_features]
in_channels_per_feature = [input_shapes[f].channels for f in in_features]
_assert_strides_are_log2_contiguous(strides)
lateral_convs = []
output_convs = []
use_bias = norm == ""
for idx, in_channels in enumerate(in_channels_per_feature):
lateral_norm = get_norm(norm, out_channels)
output_norm = get_norm(norm, out_channels)
lateral_conv = Conv2d(
in_channels, out_channels, kernel_size=1, bias=use_bias, norm=lateral_norm
)
output_conv = Conv2d(
out_channels,
out_channels,
kernel_size=3,
stride=1,
padding=1,
bias=use_bias,
norm=output_norm,
)
weight_init.c2_xavier_fill(lateral_conv)
weight_init.c2_xavier_fill(output_conv)
stage = int(math.log2(strides[idx]))
self.add_module("fpn_lateral{}".format(stage), lateral_conv)
self.add_module("fpn_output{}".format(stage), output_conv)
lateral_convs.append(lateral_conv)
output_convs.append(output_conv)
# Place convs into top-down order (from low to high resolution)
# to make the top-down computation in forward clearer.
self.lateral_convs = lateral_convs[::-1]
self.output_convs = output_convs[::-1]
self.top_block = top_block
self.in_features = tuple(in_features)
self.bottom_up = bottom_up
# Return feature names are "p<stage>", like ["p2", "p3", ..., "p6"]
self._out_feature_strides = {"p{}".format(int(math.log2(s))): s for s in strides}
# top block output feature maps.
if self.top_block is not None:
for s in range(stage, stage + self.top_block.num_levels):
self._out_feature_strides["p{}".format(s + 1)] = 2 ** (s + 1)
self._out_features = list(self._out_feature_strides.keys())
self._out_feature_channels = {k: out_channels for k in self._out_features}
self._size_divisibility = strides[-1]
self._square_pad = square_pad
assert fuse_type in {"avg", "sum"}
self._fuse_type = fuse_type
@property
def size_divisibility(self):
return self._size_divisibility
@property
def padding_constraints(self):
return {"square_size": self._square_pad}
def forward(self, x):
"""
Args:
input (dict[str->Tensor]): mapping feature map name (e.g., "res5") to
feature map tensor for each feature level in high to low resolution order.
Returns:
dict[str->Tensor]:
mapping from feature map name to FPN feature map tensor
in high to low resolution order. Returned feature names follow the FPN
paper convention: "p<stage>", where stage has stride = 2 ** stage e.g.,
["p2", "p3", ..., "p6"].
"""
bottom_up_features = self.bottom_up(x)
results = []
prev_features = self.lateral_convs[0](bottom_up_features[self.in_features[-1]])
results.append(self.output_convs[0](prev_features))
# Reverse feature maps into top-down order (from low to high resolution)
for idx, (lateral_conv, output_conv) in enumerate(
zip(self.lateral_convs, self.output_convs)
):
# Slicing of ModuleList is not supported https://github.com/pytorch/pytorch/issues/47336
# Therefore we loop over all modules but skip the first one
if idx > 0:
features = self.in_features[-idx - 1]
features = bottom_up_features[features]
top_down_features = F.interpolate(prev_features, scale_factor=2.0, mode="nearest")
lateral_features = lateral_conv(features)
prev_features = lateral_features + top_down_features
if self._fuse_type == "avg":
prev_features /= 2
results.insert(0, output_conv(prev_features))
if self.top_block is not None:
if self.top_block.in_feature in bottom_up_features:
top_block_in_feature = bottom_up_features[self.top_block.in_feature]
else:
top_block_in_feature = results[self._out_features.index(self.top_block.in_feature)]
results.extend(self.top_block(top_block_in_feature))
assert len(self._out_features) == len(results)
return {f: res for f, res in zip(self._out_features, results)}
def output_shape(self):
return {
name: ShapeSpec(
channels=self._out_feature_channels[name], stride=self._out_feature_strides[name]
)
for name in self._out_features
}
def _assert_strides_are_log2_contiguous(strides):
"""
Assert that each stride is 2x times its preceding stride, i.e. "contiguous in log2".
"""
for i, stride in enumerate(strides[1:], 1):
assert stride == 2 * strides[i - 1], "Strides {} {} are not log2 contiguous".format(
stride, strides[i - 1]
)
class LastLevelMaxPool(nn.Module):
"""
This module is used in the original FPN to generate a downsampled
P6 feature from P5.
"""
def __init__(self):
super().__init__()
self.num_levels = 1
self.in_feature = "p5"
def forward(self, x):
return [F.max_pool2d(x, kernel_size=1, stride=2, padding=0)]
class LastLevelP6P7(nn.Module):
"""
This module is used in RetinaNet to generate extra layers, P6 and P7 from
C5 feature.
"""
def __init__(self, in_channels, out_channels, in_feature="res5"):
super().__init__()
self.num_levels = 2
self.in_feature = in_feature
self.p6 = nn.Conv2d(in_channels, out_channels, 3, 2, 1)
self.p7 = nn.Conv2d(out_channels, out_channels, 3, 2, 1)
for module in [self.p6, self.p7]:
weight_init.c2_xavier_fill(module)
def forward(self, c5):
p6 = self.p6(c5)
p7 = self.p7(F.relu(p6))
return [p6, p7]
@BACKBONE_REGISTRY.register()
def build_resnet_fpn_backbone(cfg, input_shape: ShapeSpec):
"""
Args:
cfg: a detectron2 CfgNode
Returns:
backbone (Backbone): backbone module, must be a subclass of :class:`Backbone`.
"""
bottom_up = build_resnet_backbone(cfg, input_shape)
in_features = cfg.MODEL.FPN.IN_FEATURES
out_channels = cfg.MODEL.FPN.OUT_CHANNELS
backbone = FPN(
bottom_up=bottom_up,
in_features=in_features,
out_channels=out_channels,
norm=cfg.MODEL.FPN.NORM,
top_block=LastLevelMaxPool(),
fuse_type=cfg.MODEL.FPN.FUSE_TYPE,
)
return backbone
@BACKBONE_REGISTRY.register()
def build_retinanet_resnet_fpn_backbone(cfg, input_shape: ShapeSpec):
"""
Args:
cfg: a detectron2 CfgNode
Returns:
backbone (Backbone): backbone module, must be a subclass of :class:`Backbone`.
"""
bottom_up = build_resnet_backbone(cfg, input_shape)
in_features = cfg.MODEL.FPN.IN_FEATURES
out_channels = cfg.MODEL.FPN.OUT_CHANNELS
in_channels_p6p7 = bottom_up.output_shape()["res5"].channels
backbone = FPN(
bottom_up=bottom_up,
in_features=in_features,
out_channels=out_channels,
norm=cfg.MODEL.FPN.NORM,
top_block=LastLevelP6P7(in_channels_p6p7, out_channels),
fuse_type=cfg.MODEL.FPN.FUSE_TYPE,
)
return backbone
|