Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,610 Bytes
b213d84 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 |
import logging
import torch
import torch.nn as nn
import torch.nn.functional as F
from diffusers import AutoencoderKL, DDPMScheduler
from leffa.diffusion_model.unet_ref import (
UNet2DConditionModel as ReferenceUNet,
)
from leffa.diffusion_model.unet_gen import (
UNet2DConditionModel as GenerativeUNet,
)
logger: logging.Logger = logging.getLogger(__name__)
class LeffaModel(nn.Module):
def __init__(
self,
pretrained_model_name_or_path: str = "",
pretrained_model: str = "",
new_in_channels: int = 12, # noisy_image: 4, mask: 1, masked_image: 4, densepose: 3
height: int = 1024,
width: int = 768,
):
super().__init__()
self.height = height
self.width = width
self.build_models(
pretrained_model_name_or_path,
pretrained_model,
new_in_channels,
)
def build_models(
self,
pretrained_model_name_or_path: str = "",
pretrained_model: str = "",
new_in_channels: int = 12,
):
diffusion_model_type = ""
if "stable-diffusion-inpainting" in pretrained_model_name_or_path:
diffusion_model_type = "sd15"
elif "stable-diffusion-xl-1.0-inpainting-0.1" in pretrained_model_name_or_path:
diffusion_model_type = "sdxl"
# Noise Scheduler
self.noise_scheduler = DDPMScheduler.from_pretrained(
pretrained_model_name_or_path,
subfolder="scheduler",
rescale_betas_zero_snr=False if diffusion_model_type == "sd15" else True,
)
# VAE
vae_config, vae_kwargs = AutoencoderKL.load_config(
pretrained_model_name_or_path,
subfolder="vae",
return_unused_kwargs=True,
)
self.vae = AutoencoderKL.from_config(vae_config, **vae_kwargs)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
# Reference UNet
unet_config, unet_kwargs = ReferenceUNet.load_config(
pretrained_model_name_or_path,
subfolder="unet",
return_unused_kwargs=True,
)
self.unet_encoder = ReferenceUNet.from_config(unet_config, **unet_kwargs)
self.unet_encoder.config.addition_embed_type = None
# Generative UNet
unet_config, unet_kwargs = GenerativeUNet.load_config(
pretrained_model_name_or_path,
subfolder="unet",
return_unused_kwargs=True,
)
self.unet = GenerativeUNet.from_config(unet_config, **unet_kwargs)
self.unet.config.addition_embed_type = None
# Change Generative UNet conv_in and conv_out
unet_conv_in_channel_changed = self.unet.config.in_channels != new_in_channels
if unet_conv_in_channel_changed:
self.unet.conv_in = self.replace_conv_in_layer(self.unet, new_in_channels)
self.unet.config.in_channels = new_in_channels
unet_conv_out_channel_changed = (
self.unet.config.out_channels != self.vae.config.latent_channels
)
if unet_conv_out_channel_changed:
self.unet.conv_out = self.replace_conv_out_layer(
self.unet, self.vae.config.latent_channels
)
self.unet.config.out_channels = self.vae.config.latent_channels
unet_encoder_conv_in_channel_changed = (
self.unet_encoder.config.in_channels != self.vae.config.latent_channels
)
if unet_encoder_conv_in_channel_changed:
self.unet_encoder.conv_in = self.replace_conv_in_layer(
self.unet_encoder, self.vae.config.latent_channels
)
self.unet_encoder.config.in_channels = self.vae.config.latent_channels
unet_encoder_conv_out_channel_changed = (
self.unet_encoder.config.out_channels != self.vae.config.latent_channels
)
if unet_encoder_conv_out_channel_changed:
self.unet_encoder.conv_out = self.replace_conv_out_layer(
self.unet_encoder, self.vae.config.latent_channels
)
self.unet_encoder.config.out_channels = self.vae.config.latent_channels
# Remove Cross Attention
remove_cross_attention(self.unet)
remove_cross_attention(self.unet_encoder, model_type="unet_encoder")
# Load pretrained model
if pretrained_model != "" and pretrained_model is not None:
self.load_state_dict(torch.load(pretrained_model, map_location="cpu"))
logger.info("Load pretrained model from {}".format(pretrained_model))
def replace_conv_in_layer(self, unet_model, new_in_channels):
original_conv_in = unet_model.conv_in
if original_conv_in.in_channels == new_in_channels:
return original_conv_in
new_conv_in = torch.nn.Conv2d(
in_channels=new_in_channels,
out_channels=original_conv_in.out_channels,
kernel_size=original_conv_in.kernel_size,
padding=1,
)
new_conv_in.weight.data.zero_()
new_conv_in.bias.data = original_conv_in.bias.data.clone()
if original_conv_in.in_channels < new_in_channels:
new_conv_in.weight.data[:, : original_conv_in.in_channels] = (
original_conv_in.weight.data
)
else:
new_conv_in.weight.data[:, :new_in_channels] = original_conv_in.weight.data[
:, :new_in_channels
]
return new_conv_in
def replace_conv_out_layer(self, unet_model, new_out_channels):
original_conv_out = unet_model.conv_out
if original_conv_out.out_channels == new_out_channels:
return original_conv_out
new_conv_out = torch.nn.Conv2d(
in_channels=original_conv_out.in_channels,
out_channels=new_out_channels,
kernel_size=original_conv_out.kernel_size,
padding=1,
)
new_conv_out.weight.data.zero_()
new_conv_out.bias.data[: original_conv_out.out_channels] = (
original_conv_out.bias.data.clone()
)
if original_conv_out.out_channels < new_out_channels:
new_conv_out.weight.data[: original_conv_out.out_channels] = (
original_conv_out.weight.data
)
else:
new_conv_out.weight.data[:new_out_channels] = original_conv_out.weight.data[
:new_out_channels
]
return new_conv_out
def vae_encode(self, pixel_values):
pixel_values = pixel_values.to(device=self.vae.device, dtype=self.vae.dtype)
with torch.no_grad():
latent = self.vae.encode(pixel_values).latent_dist.sample()
latent = latent * self.vae.config.scaling_factor
return latent
class SkipAttnProcessor(torch.nn.Module):
def __init__(self, *args, **kwargs) -> None:
super().__init__()
def __call__(
self,
attn,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
temb=None,
):
return hidden_states
def remove_cross_attention(
unet,
cross_attn_cls=SkipAttnProcessor,
self_attn_cls=None,
cross_attn_dim=None,
**kwargs,
):
if cross_attn_dim is None:
cross_attn_dim = unet.config.cross_attention_dim
attn_procs = {}
for name in unet.attn_processors.keys():
cross_attention_dim = (
None if name.endswith("attn1.processor") else cross_attn_dim
)
if name.startswith("mid_block"):
hidden_size = unet.config.block_out_channels[-1]
elif name.startswith("up_blocks"):
block_id = int(name[len("up_blocks.")])
hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
elif name.startswith("down_blocks"):
block_id = int(name[len("down_blocks.")])
hidden_size = unet.config.block_out_channels[block_id]
if cross_attention_dim is None:
if self_attn_cls is not None:
attn_procs[name] = self_attn_cls(
hidden_size=hidden_size,
cross_attention_dim=cross_attention_dim,
**kwargs,
)
else:
# retain the original attn processor
attn_procs[name] = AttnProcessor2_0(
hidden_size=hidden_size,
cross_attention_dim=cross_attention_dim,
layer_name=name,
**kwargs,
)
else:
attn_procs[name] = cross_attn_cls(
hidden_size=hidden_size,
cross_attention_dim=cross_attention_dim,
**kwargs,
)
unet.set_attn_processor(attn_procs)
adapter_modules = torch.nn.ModuleList(unet.attn_processors.values())
return adapter_modules
class AttnProcessor2_0(torch.nn.Module):
r"""
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
"""
def __init__(
self, hidden_size=None, cross_attention_dim=None, layer_name=None, **kwargs
):
super().__init__()
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError(
"AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
)
self.layer_name = layer_name
self.model_type = kwargs.get("model_type", "none")
def __call__(
self,
attn,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
temb=None,
*args,
**kwargs,
):
residual = hidden_states
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(
batch_size, channel, height * width
).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape
if encoder_hidden_states is None
else encoder_hidden_states.shape
)
if attention_mask is not None:
attention_mask = attn.prepare_attention_mask(
attention_mask, sequence_length, batch_size
)
# scaled_dot_product_attention expects attention_mask shape to be
# (batch, heads, source_length, target_length)
attention_mask = attention_mask.view(
batch_size, attn.heads, -1, attention_mask.shape[-1]
)
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(
1, 2
)
query = attn.to_q(hidden_states)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(
encoder_hidden_states
)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# the output of sdp = (batch, num_heads, seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
hidden_states = hidden_states.transpose(1, 2).reshape(
batch_size, -1, attn.heads * head_dim
)
hidden_states = hidden_states.to(query.dtype)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(
batch_size, channel, height, width
)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states |