File size: 12,610 Bytes
b213d84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
import logging

import torch
import torch.nn as nn
import torch.nn.functional as F
from diffusers import AutoencoderKL, DDPMScheduler

from leffa.diffusion_model.unet_ref import (
    UNet2DConditionModel as ReferenceUNet,
)
from leffa.diffusion_model.unet_gen import (
    UNet2DConditionModel as GenerativeUNet,
)

logger: logging.Logger = logging.getLogger(__name__)


class LeffaModel(nn.Module):
    def __init__(
        self,
        pretrained_model_name_or_path: str = "",
        pretrained_model: str = "",
        new_in_channels: int = 12,  # noisy_image: 4, mask: 1, masked_image: 4, densepose: 3
        height: int = 1024,
        width: int = 768,
    ):
        super().__init__()

        self.height = height
        self.width = width

        self.build_models(
            pretrained_model_name_or_path,
            pretrained_model,
            new_in_channels,
        )

    def build_models(
        self,
        pretrained_model_name_or_path: str = "",
        pretrained_model: str = "",
        new_in_channels: int = 12,
    ):
        diffusion_model_type = ""
        if "stable-diffusion-inpainting" in pretrained_model_name_or_path:
            diffusion_model_type = "sd15"
        elif "stable-diffusion-xl-1.0-inpainting-0.1" in pretrained_model_name_or_path:
            diffusion_model_type = "sdxl"

        # Noise Scheduler
        self.noise_scheduler = DDPMScheduler.from_pretrained(
            pretrained_model_name_or_path,
            subfolder="scheduler",
            rescale_betas_zero_snr=False if diffusion_model_type == "sd15" else True,
        )
        # VAE
        vae_config, vae_kwargs = AutoencoderKL.load_config(
            pretrained_model_name_or_path,
            subfolder="vae",
            return_unused_kwargs=True,
        )
        self.vae = AutoencoderKL.from_config(vae_config, **vae_kwargs)
        self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
        # Reference UNet
        unet_config, unet_kwargs = ReferenceUNet.load_config(
            pretrained_model_name_or_path,
            subfolder="unet",
            return_unused_kwargs=True,
        )
        self.unet_encoder = ReferenceUNet.from_config(unet_config, **unet_kwargs)
        self.unet_encoder.config.addition_embed_type = None
        # Generative UNet
        unet_config, unet_kwargs = GenerativeUNet.load_config(
            pretrained_model_name_or_path,
            subfolder="unet",
            return_unused_kwargs=True,
        )
        self.unet = GenerativeUNet.from_config(unet_config, **unet_kwargs)
        self.unet.config.addition_embed_type = None
        # Change Generative UNet conv_in and conv_out
        unet_conv_in_channel_changed = self.unet.config.in_channels != new_in_channels
        if unet_conv_in_channel_changed:
            self.unet.conv_in = self.replace_conv_in_layer(self.unet, new_in_channels)
            self.unet.config.in_channels = new_in_channels
        unet_conv_out_channel_changed = (
            self.unet.config.out_channels != self.vae.config.latent_channels
        )
        if unet_conv_out_channel_changed:
            self.unet.conv_out = self.replace_conv_out_layer(
                self.unet, self.vae.config.latent_channels
            )
            self.unet.config.out_channels = self.vae.config.latent_channels

        unet_encoder_conv_in_channel_changed = (
            self.unet_encoder.config.in_channels != self.vae.config.latent_channels
        )
        if unet_encoder_conv_in_channel_changed:
            self.unet_encoder.conv_in = self.replace_conv_in_layer(
                self.unet_encoder, self.vae.config.latent_channels
            )
            self.unet_encoder.config.in_channels = self.vae.config.latent_channels
        unet_encoder_conv_out_channel_changed = (
            self.unet_encoder.config.out_channels != self.vae.config.latent_channels
        )
        if unet_encoder_conv_out_channel_changed:
            self.unet_encoder.conv_out = self.replace_conv_out_layer(
                self.unet_encoder, self.vae.config.latent_channels
            )
            self.unet_encoder.config.out_channels = self.vae.config.latent_channels

        # Remove Cross Attention
        remove_cross_attention(self.unet)
        remove_cross_attention(self.unet_encoder, model_type="unet_encoder")

        # Load pretrained model
        if pretrained_model != "" and pretrained_model is not None:
            self.load_state_dict(torch.load(pretrained_model, map_location="cpu"))
            logger.info("Load pretrained model from {}".format(pretrained_model))

    def replace_conv_in_layer(self, unet_model, new_in_channels):
        original_conv_in = unet_model.conv_in

        if original_conv_in.in_channels == new_in_channels:
            return original_conv_in

        new_conv_in = torch.nn.Conv2d(
            in_channels=new_in_channels,
            out_channels=original_conv_in.out_channels,
            kernel_size=original_conv_in.kernel_size,
            padding=1,
        )
        new_conv_in.weight.data.zero_()
        new_conv_in.bias.data = original_conv_in.bias.data.clone()
        if original_conv_in.in_channels < new_in_channels:
            new_conv_in.weight.data[:, : original_conv_in.in_channels] = (
                original_conv_in.weight.data
            )
        else:
            new_conv_in.weight.data[:, :new_in_channels] = original_conv_in.weight.data[
                :, :new_in_channels
            ]
        return new_conv_in

    def replace_conv_out_layer(self, unet_model, new_out_channels):
        original_conv_out = unet_model.conv_out

        if original_conv_out.out_channels == new_out_channels:
            return original_conv_out

        new_conv_out = torch.nn.Conv2d(
            in_channels=original_conv_out.in_channels,
            out_channels=new_out_channels,
            kernel_size=original_conv_out.kernel_size,
            padding=1,
        )
        new_conv_out.weight.data.zero_()
        new_conv_out.bias.data[: original_conv_out.out_channels] = (
            original_conv_out.bias.data.clone()
        )
        if original_conv_out.out_channels < new_out_channels:
            new_conv_out.weight.data[: original_conv_out.out_channels] = (
                original_conv_out.weight.data
            )
        else:
            new_conv_out.weight.data[:new_out_channels] = original_conv_out.weight.data[
                :new_out_channels
            ]
        return new_conv_out

    def vae_encode(self, pixel_values):
        pixel_values = pixel_values.to(device=self.vae.device, dtype=self.vae.dtype)
        with torch.no_grad():
            latent = self.vae.encode(pixel_values).latent_dist.sample()
        latent = latent * self.vae.config.scaling_factor
        return latent


class SkipAttnProcessor(torch.nn.Module):
    def __init__(self, *args, **kwargs) -> None:
        super().__init__()

    def __call__(
        self,
        attn,
        hidden_states,
        encoder_hidden_states=None,
        attention_mask=None,
        temb=None,
    ):
        return hidden_states


def remove_cross_attention(
    unet,
    cross_attn_cls=SkipAttnProcessor,
    self_attn_cls=None,
    cross_attn_dim=None,
    **kwargs,
):
    if cross_attn_dim is None:
        cross_attn_dim = unet.config.cross_attention_dim
    attn_procs = {}
    for name in unet.attn_processors.keys():
        cross_attention_dim = (
            None if name.endswith("attn1.processor") else cross_attn_dim
        )
        if name.startswith("mid_block"):
            hidden_size = unet.config.block_out_channels[-1]
        elif name.startswith("up_blocks"):
            block_id = int(name[len("up_blocks.")])
            hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
        elif name.startswith("down_blocks"):
            block_id = int(name[len("down_blocks.")])
            hidden_size = unet.config.block_out_channels[block_id]
        if cross_attention_dim is None:
            if self_attn_cls is not None:
                attn_procs[name] = self_attn_cls(
                    hidden_size=hidden_size,
                    cross_attention_dim=cross_attention_dim,
                    **kwargs,
                )
            else:
                # retain the original attn processor
                attn_procs[name] = AttnProcessor2_0(
                    hidden_size=hidden_size,
                    cross_attention_dim=cross_attention_dim,
                    layer_name=name,
                    **kwargs,
                )
        else:
            attn_procs[name] = cross_attn_cls(
                hidden_size=hidden_size,
                cross_attention_dim=cross_attention_dim,
                **kwargs,
            )

    unet.set_attn_processor(attn_procs)
    adapter_modules = torch.nn.ModuleList(unet.attn_processors.values())
    return adapter_modules



class AttnProcessor2_0(torch.nn.Module):
    r"""
    Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
    """

    def __init__(
        self, hidden_size=None, cross_attention_dim=None, layer_name=None, **kwargs
    ):
        super().__init__()
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError(
                "AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
            )
        self.layer_name = layer_name
        self.model_type = kwargs.get("model_type", "none")

    def __call__(
        self,
        attn,
        hidden_states,
        encoder_hidden_states=None,
        attention_mask=None,
        temb=None,
        *args,
        **kwargs,
    ):
        residual = hidden_states

        if attn.spatial_norm is not None:
            hidden_states = attn.spatial_norm(hidden_states, temb)

        input_ndim = hidden_states.ndim

        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(
                batch_size, channel, height * width
            ).transpose(1, 2)

        batch_size, sequence_length, _ = (
            hidden_states.shape
            if encoder_hidden_states is None
            else encoder_hidden_states.shape
        )

        if attention_mask is not None:
            attention_mask = attn.prepare_attention_mask(
                attention_mask, sequence_length, batch_size
            )
            # scaled_dot_product_attention expects attention_mask shape to be
            # (batch, heads, source_length, target_length)
            attention_mask = attention_mask.view(
                batch_size, attn.heads, -1, attention_mask.shape[-1]
            )

        if attn.group_norm is not None:
            hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(
                1, 2
            )

        query = attn.to_q(hidden_states)

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(
                encoder_hidden_states
            )

        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)

        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads

        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        # the output of sdp = (batch, num_heads, seq_len, head_dim)
        # TODO: add support for attn.scale when we move to Torch 2.1
        hidden_states = F.scaled_dot_product_attention(
            query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
        )

        hidden_states = hidden_states.transpose(1, 2).reshape(
            batch_size, -1, attn.heads * head_dim
        )
        hidden_states = hidden_states.to(query.dtype)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(
                batch_size, channel, height, width
            )

        if attn.residual_connection:
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor

        return hidden_states