File size: 12,318 Bytes
b213d84
 
16c2627
b213d84
 
 
 
 
24e151d
d589c4e
f6d7e87
d17f401
b213d84
afadbd4
 
dc1bb11
 
16c2627
24e151d
16c2627
c81c28f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc1bb11
 
d589c4e
b213d84
 
 
810339f
 
 
 
 
 
 
 
 
 
 
24e151d
 
b213d84
 
 
 
 
 
 
c81c28f
b213d84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c81c28f
 
 
 
b213d84
 
 
 
 
d589c4e
24e151d
 
 
d589c4e
dc1bb11
 
 
f6d7e87
dc1bb11
f6d7e87
 
d589c4e
f6d7e87
dc1bb11
f6d7e87
 
d589c4e
 
 
24e151d
d589c4e
24e151d
 
 
d589c4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24e151d
 
d589c4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc1bb11
d589c4e
 
 
 
 
 
 
24e151d
d589c4e
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
import numpy as np
from PIL import Image
from huggingface_hub import snapshot_download
from leffa.transform import LeffaTransform
from leffa.model import LeffaModel
from leffa.inference import LeffaInference
from utils.garment_agnostic_mask_predictor import AutoMasker
from utils.densepose_predictor import DensePosePredictor
from utils.utils import resize_and_center
import spaces
import requests
from io import BytesIO

import gradio as gr

print("Imports done, downloading the model...")

# Download checkpoints
snapshot_download(repo_id="franciszzj/Leffa", local_dir="./ckpts")

mask_predictor = AutoMasker(
    densepose_path="./ckpts/densepose",
    schp_path="./ckpts/schp",
)

densepose_predictor = DensePosePredictor(
    config_path="./ckpts/densepose/densepose_rcnn_R_50_FPN_s1x.yaml",
    weights_path="./ckpts/densepose/model_final_162be9.pkl",
)

vt_model = LeffaModel(
    pretrained_model_name_or_path="./ckpts/stable-diffusion-inpainting",
    pretrained_model="./ckpts/virtual_tryon.pth",
)
vt_inference = LeffaInference(model=vt_model)

pt_model = LeffaModel(
    pretrained_model_name_or_path="./ckpts/stable-diffusion-xl-1.0-inpainting-0.1",
    pretrained_model="./ckpts/pose_transfer.pth",
)
pt_inference = LeffaInference(model=pt_model)

print("Model downloaded, ready to serve!")

@spaces.GPU
def leffa_predict(src_image_path, ref_image_path, control_type):
    assert control_type in [
        "virtual_tryon", "pose_transfer"], "Invalid control type: {}".format(control_type)
    
    if isinstance(src_image_path, str):
        src_image = Image.open(src_image_path)
    else:
        src_image = src_image_path
    
    if isinstance(ref_image_path, str):
        ref_image = Image.open(ref_image_path)
    else:
        ref_image = ref_image_path
    
    src_image = resize_and_center(src_image, 768, 1024)
    ref_image = resize_and_center(ref_image, 768, 1024)

    src_image_array = np.array(src_image)
    ref_image_array = np.array(ref_image)

    # Mask
    if control_type == "virtual_tryon":
        src_image = src_image.convert("RGB")
        mask = mask_predictor(src_image, "upper")["mask"]
    elif control_type == "pose_transfer":
        mask = Image.fromarray(np.ones_like(src_image_array) * 255)

    # DensePose
    src_image_iuv_array = densepose_predictor.predict_iuv(src_image_array)
    src_image_seg_array = densepose_predictor.predict_seg(src_image_array)
    src_image_iuv = Image.fromarray(src_image_iuv_array)
    src_image_seg = Image.fromarray(src_image_seg_array)
    if control_type == "virtual_tryon":
        densepose = src_image_seg
    elif control_type == "pose_transfer":
        densepose = src_image_iuv

    # Leffa
    transform = LeffaTransform()

    data = {
        "src_image": [src_image],
        "ref_image": [ref_image],
        "mask": [mask],
        "densepose": [densepose],
    }
    data = transform(data)
    if control_type == "virtual_tryon":
        inference = vt_inference
    elif control_type == "pose_transfer":
        inference = pt_inference
    output = inference(data)
    gen_image = output["generated_image"][0]
    # gen_image.save("gen_image.png")
    return np.array(gen_image)

@spaces.GPU
def leffa_predict_vt(src_image_path, ref_image_path):
    return leffa_predict(src_image_path, ref_image_path, "virtual_tryon")

@spaces.GPU
def leffa_predict_vt_image_url(person_url, garment_url):
    if not person_url or not garment_url:
        return None
    
    src_image = fetch_image_from_url(person_url)
    if not src_image:
        return None
    print("fetched person image")
    
    ref_image = fetch_image_from_url(garment_url)
    if not ref_image:
        return None
    print("fetched garment image")

    return leffa_predict(src_image, ref_image, "virtual_tryon")

@spaces.GPU
def leffa_predict_pt(src_image_path, ref_image_path):
    return leffa_predict(src_image_path, ref_image_path, "pose_transfer")

def fetch_image_from_url(url):
    try:
        response = requests.get(url)
        img = Image.open(BytesIO(response.content))
        return img
    except Exception as e:
        print(e)
        return None

def handle_image_input(image_input):
    if image_input.startswith('http'):
        return fetch_image_from_url(image_input)
    else:
        return Image.open(image_input)

# if __name__ == "__main__":
#     # import sys

#     # src_image_path = sys.argv[1]
#     # ref_image_path = sys.argv[2]
#     # control_type = sys.argv[3]
#     # leffa_predict(src_image_path, ref_image_path, control_type)

#     title = "## Leffa: Learning Flow Fields in Attention for Controllable Person Image Generation"
#     link = "[📚 Paper](https://arxiv.org/abs/2412.08486) - [🔥 Demo](https://huggingface.co/spaces/franciszzj/Leffa) - [🤗 Model](https://huggingface.co/franciszzj/Leffa)"
#     description = "Leffa is a unified framework for controllable person image generation that enables precise manipulation of both appearance (i.e., virtual try-on) and pose (i.e., pose transfer)."
#     note = "Note: The models used in the demo are trained solely on academic datasets. Virtual try-on uses VITON-HD, and pose transfer uses DeepFashion."

#     with gr.Blocks(theme=gr.themes.Default(primary_hue=gr.themes.colors.pink, secondary_hue=gr.themes.colors.red)).queue() as demo:
#         gr.Markdown(title)
#         gr.Markdown(link)
#         gr.Markdown(description)

#         with gr.Tab("Control Appearance (Virtual Try-on)"):
#             with gr.Row():
#                 with gr.Column():
#                     gr.Markdown("#### Person Image")
#                     vt_src_image = gr.Image(
#                         sources=["upload", "url"],
#                         type="filepath",
#                         label="Person Image",
#                         width=512,
#                         height=512,
#                     )

#                     gr.Examples(
#                         inputs=vt_src_image,
#                         examples_per_page=5,
#                         examples=["./ckpts/examples/person1/01350_00.jpg",
#                                   "./ckpts/examples/person1/01376_00.jpg",
#                                   "./ckpts/examples/person1/01416_00.jpg",
#                                   "./ckpts/examples/person1/05976_00.jpg",
#                                   "./ckpts/examples/person1/06094_00.jpg",],
#                     )

#                 with gr.Column():
#                     gr.Markdown("#### Garment Image")
#                     vt_ref_image = gr.Image(
#                         sources=["upload", "url"],
#                         type="filepath",
#                         label="Garment Image",
#                         width=512,
#                         height=512,
#                     )

#                     gr.Examples(
#                         inputs=vt_ref_image,
#                         examples_per_page=5,
#                         examples=["./ckpts/examples/garment/01449_00.jpg",
#                                   "./ckpts/examples/garment/01486_00.jpg",
#                                   "./ckpts/examples/garment/01853_00.jpg",
#                                   "./ckpts/examples/garment/02070_00.jpg",
#                                   "./ckpts/examples/garment/03553_00.jpg",],
#                     )

#                 with gr.Column():
#                     gr.Markdown("#### Generated Image")
#                     vt_gen_image = gr.Image(
#                         label="Generated Image",
#                         width=512,
#                         height=512,
#                     )

#                     with gr.Row():
#                         vt_gen_button = gr.Button("Generate")

#                 vt_gen_button.click(fn=leffa_predict_vt, inputs=[
#                     vt_src_image, vt_ref_image], outputs=[vt_gen_image])

#         with gr.Tab("Control Pose (Pose Transfer)"):
#             with gr.Row():
#                 with gr.Column():
#                     gr.Markdown("#### Person Image")
#                     pt_ref_image = gr.Image(
#                         sources=["upload"],
#                         type="filepath",
#                         label="Person Image",
#                         width=512,
#                         height=512,
#                     )

#                     gr.Examples(
#                         inputs=pt_ref_image,
#                         examples_per_page=5,
#                         examples=["./ckpts/examples/person1/01350_00.jpg",
#                                   "./ckpts/examples/person1/01376_00.jpg",
#                                   "./ckpts/examples/person1/01416_00.jpg",
#                                   "./ckpts/examples/person1/05976_00.jpg",
#                                   "./ckpts/examples/person1/06094_00.jpg",],
#                     )

#                 with gr.Column():
#                     gr.Markdown("#### Target Pose Person Image")
#                     pt_src_image = gr.Image(
#                         sources=["upload"],
#                         type="filepath",
#                         label="Target Pose Person Image",
#                         width=512,
#                         height=512,
#                     )

#                     gr.Examples(
#                         inputs=pt_src_image,
#                         examples_per_page=5,
#                         examples=["./ckpts/examples/person2/01850_00.jpg",
#                                   "./ckpts/examples/person2/01875_00.jpg",
#                                   "./ckpts/examples/person2/02532_00.jpg",
#                                   "./ckpts/examples/person2/02902_00.jpg",
#                                   "./ckpts/examples/person2/05346_00.jpg",],
#                     )

#                 with gr.Column():
#                     gr.Markdown("#### Generated Image")
#                     pt_gen_image = gr.Image(
#                         label="Generated Image",
#                         width=512,
#                         height=512,
#                     )

#                     with gr.Row():
#                         pose_transfer_gen_button = gr.Button("Generate")

#                 pose_transfer_gen_button.click(fn=leffa_predict_pt, inputs=[
#                     pt_src_image, pt_ref_image], outputs=[pt_gen_image])

#         gr.Markdown(note)

#         demo.launch(share=True, server_port=7860)

def create_demo():
    title = "## Virtual Try-on with URLs"
    description = "Enter URLs for both the person image and the garment image to generate a virtual try-on result."
    
    with gr.Blocks(theme=gr.themes.Default(primary_hue=gr.themes.colors.pink)) as demo:
        gr.Markdown(title)
        gr.Markdown(description)
        
        with gr.Row():
            with gr.Column():
                person_url = gr.Textbox(
                    label="Person Image URL",
                    placeholder="Enter URL of the person image..."
                )
                garment_url = gr.Textbox(
                    label="Garment Image URL",
                    placeholder="Enter URL of the garment image..."
                )
                
                # Example URLs
                gr.Examples(
                    inputs=[person_url, garment_url],
                    examples=[
                        ["https://example.com/person1.jpg", "https://example.com/garment1.jpg"],
                        ["https://example.com/person2.jpg", "https://example.com/garment2.jpg"],
                    ],
                    label="Example URLs"
                )
                
                generate_btn = gr.Button("Generate Try-on")
            
            with gr.Column():
                output_image = gr.Image(
                    label="Generated Result",
                    width=512,
                    height=512
                )
        
        generate_btn.click(
            fn=leffa_predict_vt_image_url,
            inputs=[person_url, garment_url],
            outputs=output_image
        )
        
        gr.Markdown("Note: This model is trained solely on academic datasets (VITON-HD).")
    
    return demo

if __name__ == "__main__":
    demo = create_demo()
    demo.launch(share=True, server_port=7860)